

ISSN:0975-1459

Journal of Pharmaceutical Sciences and Research

www.jpsr.pharmainfo.in

Evaluation of Diuretic activity from *Tylophora indica* leaves extracts

Meera R^{1*}, Devi P², Muthumani P¹, B.Kameswari³, B.Eswarapriya⁴ ¹Dept of Pharmaceutical chemistry,²Dept of Pharmacognosy, ³Dept of Bio Chemistry, K.M.College of Pharmacy, Uthangudi, Madurai, ⁴Dept of Biotechnology, St.Michael college of Engineering, Sivagangai, TamilNadu , India

ABSTRACT

Aqueous and alcoholic extracts of *Tylophora indica* leaves were tested for diuretic activity in rats. The parameters studied on individual rat were body weight before and after test period, total urine volume, urine concentration of Na⁺, K⁻ and Cl⁻. In the present study alcoholic and aqueous extracts of *Tylophora indica* leaves (100mg/kg of body weight) showed increase in urine volume, cation and anion excretion. Furosemide was used as reference diuretic.

Keywords: Diuretic activity, Furosemide, Tylophora indica

INTRODUCTION

Diuretics are drugs that increase the rate of urine flow, sodium excretion and are used to adjust the volume and composition of body fluids in a variety of clinical situations. Drug-induced diuresis is beneficial in many lifethreatening disease conditions such as congestive heart failure. nephritic syndrome, cirrhosis, failure. renal hypertension, and pregnancy toxaemia 1]. Most diuretic drugs have the adverse effect on quality of life including impotence, fatigue, and weakness. Naturally occurring diuretics include caffeine in coffee, tea, and cola, which inhibit Na⁺ reabsorption and alcohol in beer, wine and mixed drinks, which inhibit secretion of ADH [2, 3]. Although most of the diuretics proved to be very effective in promoting sodium excretion, all cause potassium loss and prompted the search for potassium sparing diuretic. Hence search for a new diuretic agent that retains therapeutic efficacy and yet devoid of potassium loss is justified [4]

Tylophora indica (Asclepiadaceae) is a branching climber, leaves ovate to orbicular, cordate – based.

It is used in the treatment of emetic. diaphoretic, cathartic. expectorant, asthma, whooping cough, dysentery. Phytochemical literature reveals the tylophorin, presence of alkaloids. flavonoids tannins, saponins, in Tylophora indica [5.6.7.8.9]. No systematic studies have been reported for its diuretic activity. Hence an effort has been made to establish the diuretic activity of aqueous and alcoholic extracts of Tylophora indica.

MATERIALS AND METHODS

Plant collection

Fresh leaves of *Tylophora indica* were collected in the month of March from the district of Madurai in Tamilnadu. It was identified and authenticated. The voucher specimens were deposited at the college for future reference.

Preparation of extracts

200gms of dried and powdered leaves were extracted with alcohol in Soxhlet apparatus for 24 hours (3 cycles hour). A dark brownish green colored residue was obtained after concentrating the extract under reduced pressure (Yield – 6.2%). The aqueous extract was obtained by macerating 250gms of powdered *Tylophora indica* leaves with 5 liters of

For Correspondence: Email: meeraharsa@yahoo.com

distilled water (72 hours). The extract was filtered and concentrated under reduced pressure to obtain a green colored residue (Yield -5.2%).

Experimental animals

In bred colony strains of Wistar rats of either sex weighing 150-250 g procured from the animal house were used for the study. The animals were maintained in polypropylene cages of standard dimensions at a temperature of 28±1° C and standard 12 hour : 12 hour day / night rhythm. The animals were fed with standard rodent pellet diet (Hindustan Lever Ltd) and water ad libitum. Prior to experiment the animals the were acclimatized to the laboratory conditions.

Preliminary phyto chemical analysis

The preliminary phytochemical analysis [10,11] were carried out to find out the phytoconsituents present in the crude extracts.

Diuretic Activity

Male rats (wister albino strain) weighing 150 to 180gm were maintained under standard condition of temperature and humidity. The method of Lipschitz et al [12.13] was employed for the assessment of diuretic activity. The experimental protocols have been approved by the Institutional Animal Ethical Committee. Four groups of six rats in each and were fasted and deprived of water for eighteen hours prior to the experiment. The first group of animals serving as control, received normal saline(25ml/Kg,p.o.); the second group received furosemide (100mg/Kg,i.p.) in saline; the third, fourth groups received the Alcohol and Aqueous extract at the doses of 100 mg/Kg, respectively, in normal saline. Immediately after administration the

animals were placed in metabolic cages (2 per cage), specially designed to separate urine and feaces, kept at room temperature of 25 ± 0.5 °C through out the experiment. The urine was collected in measuring cylinders up to 3 hrs after dosing. During this period, no food or water was made available to animals. The parameters taken for individual rat were body weight before and after test period, total concentration of Na⁺, K⁺, and Cl^{-} in the urine. Na^{+} , K^+ concentrations were measured by Flame photometry [14] and Cl⁻ concentration was estimated by titration [15] with silver nitrate solution(N/50)using three drop of 5% potassium chromate solution as indicator. Furosemide sodium salt was given by stomach tube. Optimal dose activity relation was found to be 20mg/Kg of furosemide per kg body weight in of supportive series experiments. Results are reported as mean \pm SD, the test of significance (p<0.01 and p<0.05) was stastically.

Statistical analysis

All the results are expressed as mean \pm standard error. The data was analyzed statistically using ANOVA [16] at a probability level of P < 0.001.

RESULTS AND DISCUSSION

The preliminary phyto chemical analysis showed the presence of Flavanoids, Glycosides, Saponins, Carbohydrates, Proteins and Aminoacids, Tannins, Terpenoids and Alkaloids in all the extracts (Table 1). Present study shows that the aqueous and alcoholic extracts of *Tylophora indica* leaves possess good diuretic activity. Urine volume, cation and anion excretion were increased, Na⁺/K⁺ ratio

S.No.	Phytochemical tests	Alcohol extract	Aqueous extract
1.	Carbohydrates	+	+
2.	Glycosides	+	+
3.	Alkaloids	÷	+
4.	Saponins		+
5.	Tannins	+	+
6.	Proteins and Aminoacids	+	+
7.	Flavonoids	*	+

Table1. Preliminary Phytochemical test of Tylophora indica Alcohol, Aqueous extract.

Table 2. Showing effect of extracts of Tylophora indica on excretory parameters

	Dama	No. of Urine		Electrolyte Excretion			Total
Treatment	Dose mg/kg	Rats	volume	Na+μ	Ka+μ	Na+/K	Chloride µ
	mg/kg	used	(ml)	Moles/kg	Moles/kg	+ ratio	Moles/kg
Normal	25ml/kg	6	2.2+12	1987 + 38	906 + 31	2.193	631.28
Saline	25mi/kg	0	2.2 ± 12	1987 ± 38	900±31	2.195	031.20
Aqueous	100ml/kg	6	4.1 ± 0.82	$3062 \pm 32*$	$1496 \pm 501*$	2.046	2010 ± 12
Extract	Toonn Kg	0	4.1 ± 0.02	3002132	1401 001	2.040	2010 ± 12
Alcoholic	100mg/kg	6	1.9 ± 0.30	2090 + 40	1120 ± 12	1.866	2210 ± 80
Extract	100mg/kg	0	1.2 ± 0.30	2090 ± 40	1120 ± 12	1.000	2210 ± 80
Furosemide	100mg/kg	6	3.6 ± 0.36	2998 ± 04	1662 ± 312	1.550	26.90 ± 110

The values are expression of the mean standard error * P<0.001 vs. control.

of 2.04 and 2.18 were obtained for aqueous and alcoholic extract respectively. The normal value for Na^+/K^+ ratio is reported to be 2.05 – 2.83. The concentration of aldosterone is found to be dependent on Na^+/K^+ ratio. If the Na^+/K^+ ratio falls below the normal in plasma the aldosterone secretion will be decreased and if the ratio rises above the normal value the aldosterone secretion will be increased. Significant increase in Na⁺, K⁺ and Cl⁻ ion excretion was observed in aqueous and alcoholic extract treated animals but it was less than the furosemide control. Further studies are required to assess the medicinal value of leaves of Tylophora *indica* as a potential diuretic agent (Table 2).

Diuretics relive pulmonary congestion and peripheral edema. These agents are useful in reducing the syndrome of volume overload, decreases cardiac workload, oxygen demand and plasma volume, thus decreasing blood pressure [17]. Thus, diuretics play an important role in hypertensive patients. In present study, we can demonstrate that ethanol, aqueous and chloroform extract may produce diuretic effect by increasing the excretion of Sodium, Potassium and Chloride. The control of plasma sodium is important in the regulation of blood volume and pressure; the control of

plasma potassium is required to maintain proper function of cardiac and skeletal muscles [18]. The regulation of Sodium, Potassium balance is also intimately related to renal control of acid-base balance. The Potassium loss that occurs with many diuretics may lead to hypokalemia. For this reason, generally potassium-sparing diuretics are recommended [19]. In present study chloroform and alcohol extracts showed elevated levels of Potassium in urine, which may increase risk of hypokalemia and hence its potassium sparing capacity has to be investigated. Active principles as flavanoids, saponins and such terpenoids are known to be responsible for diuretic activity [20,21,22]. Results of present investigation showed that ethanol is most effective in increasing urinary electrolyte concentration of all the ions i.e Sodium, Potassium and Chloride followed by chloroform and aqueous extracts while other extracts did not show significant increase in urinary electrolyte concentration.

A complex set of interrelationships exists among the cardiovascular system, the kidneys, the central nervous system (Na⁺, appetite, thirst regulation) and the tissue capillary beds (distribution of extracellular fluid volume), so that perturbation at one of these sites can affect all the remaining sites. A primary law of the kidneys is that Na⁺ excretion is a steep function of mean arterial blood (MABP) such that small pressure increase in MABP cause marked increase in Na⁺ excretion [23]. One of strategies the earliest for the management of hypertension was to alter Na⁺ balance by restriction of salt in the Diuretic agents diet. having antihypertensive effects were used alone

and had greater efficacy than all other antihypertensive drugs.

In this study pharmacological evaluation of diuretic action of aqueous and alcoholic extracts of *Tylopora indica* were evaluated using furosemide under controlled laboratory condition. As diuretic therapy may lead to number of life threatening electrolytic disorder and toxicities, so safety profile studies are carried out following a sub chronic administration of extracts. This amplify the heterogenous array of diuretic curatives available for safe and effective treatment of edema and cardiovascular diseases [24].

CONCLUSION

The extracts of *Tylophora indica* has diuretic effect supporting the ethnopharmacological use as diuretics. This effect may be explored in the use of the plant in the management of some cardiovascular diseases.

REFERENCES

- [1] Agunu ,A., Abdurahman, E.M., Andrew, G.O., Muhammed Z. Diuretic activity of the stem-bark extracts of Steganotaenia araliaceahoehst. J Ethnopharmcol 2005,96,471-5.
- [2] Agus,Z.S., Goldberg, M. Role of antidiuretic hormone in the abnormal water diuresis of anterior hypopituitarism in man. J Clin Invest. 1971,50,1478-89.
- [3] Stookey, J.D. The diuretic effects of alcohol and caffeine and total water intake misclassification. *Eur J Epidemiol*.1999, 15,181-8.
- [4] Rang, H.P., Dale, M.M., Ritter, J.M., In: *Text book of Pharmacology*. 2nd ed. Churchill Livingstone, 1994, 428-38.
- [5] Kiritikar, K.R., Basu, B.D., *Indian Medicinal Plants*, International Book

Publishers, India .1918, 111,1630-1632.

- [6] *The Wealth of India*, a Dictionary of Raw Materials and Industrial Publications and Information Directorate New Delhi, CSIR 1995, 3, 398-401
- [7] *Indian Medicinal Plants*, A Compendium of 500 species, orient Longman, Madras, 1996, 5, 339-341
- [8] Govindachari, T.R., Pai, B.R., Rajappa,S, Viswanathan, N, Chem., Ind (London), 1959, 30, 950
- [9] Saxena, H.O., Lyoydia, Survey of the plants of Orissa, 1975, 38(4), 346-351.
- [10] Kokate, C.K., Purohirt, A.R., Gokhale, C.B. *Pharmacognosy*. 27th ed. Nirali Prakashan; 2004,344.
- [11] Finar I.L. Organic chemistrystereochemistry and the chemistry of natural products. 5th ed. Singapore: Pearson Education Ltd; 1975,518.
- [12] Lipschitz W.L ., Haddian Z and Kerpscar A ., Bioassay of Diuretics, *J.Pharmacol.Exp.Ther.* 1943, 79, 97-110.
- [13] Murugesan T., Manikandan L., Suresh K.B., Pal M and Saha B.P., Evaluation of diuretic potential of *Jussiaea* suffruticosa Linn.extract in rat, *Indian* J.Pharm.Sci. 2000, 62(2), 150-151.
- [14] Jeffery, G.H., Bassett, J., Mendham, J and Denny .Vogel's Textbook of Quantitative Chemical Analysis, 5 th edition. Addison Westley Longman Ltd., England 1989, 801.
- [15] Beckette, A.H. and Stenlake, J.B., *Practical Pharmaceutical Chemistry* ,Part I, 1st edition ,CBS Publishers and Distributors ,New Delhi 1997, 197.

- [16] Amritage , P .Eds., In; Stastical Methods in Medical Research, Blackwell Scientific Publications, London 1971, 217.
- [17] Hoeland, R.D and Mycek, M.J., Lippincott's illustrated Reviews: Pharmacology, Lippincott Willams and Wilkins, Philadelphia, 2000, 157-58; 240-241.
- [18] Guyton, A.C. and Hall, J.E., The body fluid compartments: extracellular and intracellular fluids; interstitial fluid and edema. In: *Textbook of medical physiology*, ninth edition. Singapore, PA: W.B. Saunders Company 1998) pp.306-308.
- [19] Sturat, I.F., Human Physiology, Wm. C. Brown publishers, Dubuque, Iowa 2 nd Edition, 2002,500-503, 508.
- [20] Chodera ,A ., Dabrowska ,K . , Sloderbach ,A ., Skrzypczak ,L . and Budzianowski, J. Effect of flavonoid fractions of *Solidago virgaurea L*.on diuresis and levels of Electrolytes, *Acta pol pharm.* 1991,48,35-37.
- [21] Sood ,A.R., Bajpai ,A. and Digits, M., Pharmacological and biological studies on Saponins, *Indian. J. Pharmacol.* 1985,17 (3), 178-179.
- [22] Rizvi, S.H, Shoeb, A., Kapil, R.S. and Satya P.Popli, Two diuretic triterpenoids from Antiderma menasu, *Phytochemistry*. 1980, 19(11), 2409-2410.
- [23] Guyton, A.C. Blood pressure controlspecial role of the kidneys and body fluids. Science 1991, 252, 1813-6.
- [24] Maghrani, M., Zeggwagh, N., Haloui ,M., Eddouks, M. Acute diuretic effect of aqueous extract of *Retama raetam* in normal rats.*J Ethnopharmacol*,2005,99,31-35.