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Abstract 
Aim: In order to decipher the information encoded by the molecular structure of the compounds, a classical physicochemical 
descriptors based QSAR study was performed on a data set of tri-substituted derivatives reported to be selective c-Jun-N-
terminal kinase 3 (JNK3) inhibitor.  
Materials and methods: A battery of statistical methods have been applied in the present study which include linear methods 
of analysis such as multiple linear regression (MLR), partial least square PLS and non-linear approach like artificial neural 
networks (ANN). The developed models were further subjected to validation using various statistical tools and methods which 
evidently confirmed their high predictability and precision.  
Results: The predictive power and robustness of this model was further ascertained through certain statistical parameters and 
the model was found to be of excellent statistical relevance as depicted by the value of the standard statistical parameters such 
as s value: 0.22, F-value: 89.24, r: 0.97, r2: 0.94, r2CV: 0.88. The generated model provided valuable insight to the relevance of 
four descriptors, Molecular surface area (whole molecule), verloop B2 (subs 2), Verloop B4 (subs 3) and KierChiv 4 (subs 3), 
and thus implied that certain changes in the substitution pattern can bring about dramatic increase in the JNK3 inhibitory 
activity.  
Conclusion: The developed model did not only explain the dependence of bioactivity on the structures of the molecules but 
also suggested the changes that can be incorporated and applied to design novel molecules with enhanced inhibitory activity 
profile against JNK3 enzyme.  

Key Words: JNK (c-Jun N-terminal Kinase), QSAR (Quantitative Structure Activity Relationship), MLR, PLS, NN (Neural Network). 

INTRODUCTION 
Mitogen-activated protein kinases (MAPKs) are 
conventionally known to modulate embryogenesis, 
differentiation, proliferation and apoptosis in mammalian 
cells. The mammalian cells are known to exhibit the 
presence of greater than a dozen MAPK genes. The genes 
known to comprise MAPK family are: 1) p38 code four 
isoforms p38R, p38β, p38γ, and p38δ 2) the extracellular-
signal regulated kinases code ERK1, ERK2, ERK3/4, 
ERK5, and ERK7/8 and 3) c-Jun N-terminal kinase code 
three genes JNK1, JNK2 and JNK3. All these sub-members 
of MAPK family exhibit distinct functions and involvement 
in diverse regulatory pathways. The families of these three 
proteins form the core of MAPK cascades. Despite having 
not so complex structure of this pathway, these enzymes 
have ability to respond to quite a large number of 
extracellular stimuli that gives intricately specific cellular 
outcomes. The strength of the responses is governed by the 
kinetics of their activation or inactivation, the availability 
of substrates, their localization to subcellular regions, and 
the presence of the complexes for enzymes to act. The 
cascade activity is modulated through the messages given, 
to the scaffolding accessory proteins, by the primary 
kinases. 
JNK1/SAPKb, JNK2/SAPKa and JNK3/SAPKg are the 
three genes known to encode JNK family. These three 
genes manifest high extent of similarity, approximately 
85%, in the amino acid sequence of the binding domain. 
Three genes, in total, make 10 spliced isoforms, 

constituting JNK subfamily [1, 2], depending on the cleavage 
at different sites and thus weigh from 46 to 55 kDa [3]. Out 
of these three genes, JNK1 and JNK2 are expressed in a 
ubiquitous manner whereas JNK3 is primarily expressed in 
the brain and at somewhat lower levels in the heart and 
testes [2, 5- 6]. JNKs are known to be activated upon exposure 
to an extracellular stimuli such as stress caused by U.V 
irradiation, cytokines, and number of mitogens [7-11]. The 
JNKs act by phosphorylating the trans-activation domain 
present at the amino terminal of transcription factor c-Jun 
on the specific sites which in turn capacitate c-Jun to 
trigger the transcription process of some specific kind of 
genes [12-14]. In addition to c-Jun, certain other 
transcriptional factors that make contribution to 
Apolipoprotein-1 activity are also phosphorylated and 
stimulated by the JNKs. The intense curiosity in the area of 
neurodegeneration has led researchers to unfold many facts 
underlying the causes of multiple sclerosis, Alzheimer’s 
disease, Parkinson’s disease etc. The findings such as 
restricted concentration of JNK3 in brain has made it a 
putative target to unravel the factors that are responsible for 
the development and progression of various neurological 
disorders and thereby, has provided an opportunity to 
discover effective therapy to prevent or cure the 
aforementioned brain disorders. A plethora of evidence to 
support the notion of JNK3 been involved in neurological 
disorders is available in literature. For an instance, JNK3 
gene knockout mice models exhibited a discernible 
resistance to seizures induced by Kainic acid clearly 
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indicating the potential involvement of JNK3 in modulation 
of seizures [15]. Experiments done on JNK2, JNK3 and 
double knockout JNK2/JNK3 mice models showed 
resistance to neurodegeneration (caused by deficit in motor 
functions) induced by MPTP (1- methyl-4-phenyl-1,2,3,4-
tetrahydropyridine) and exhibited profound improvement in 
motor activity when compared to MPTP lesioned mice 
(wild type). These studies further assured the crucial role of 
JNK3 in causing wide array of consequences that usually 
surface during Parkinson’s disease, a leading neurological 
disorder [16]. Additionally, sections of brain of patients with 
Alzheimer’s disease, upon post-mortem, showed anomaly 
in distribution as well as activity of JNKs in diverse 
subcellular structures of specific regions targeted by 
Alzheimer’s disease [17, 18]. Also, JNK3 null mice showed 
profound decrease in cell death in cortical neurons, which 
is mediated by JNK3 via c-jun activation and increase in 
Fas ligand expression, when induced by β-amyloid [19]. 
JNK3, via phosphorylation at Thr668 [20], directly regulate 
APP and is also found to phosphorylate Tau in-vitro [21]. 
According to a recent study, JNK also facilitates TNF-R 
mediated regulation of γ-secretase [22]. In addition to this, 
the neuropathalogical effect of Alzheimer’s Aβ42 mediated 
through Toll→NFkB pathway results via apoptosis 
modulated by JNK [23]. All these findings clearly suggests 
the crucial role of JNK3 in the development as well as 
progression of Alzheimer’s disease. 
The major problem is the inefficiency of the JNK3 
inhibitors, tested so far, in terms of selectivity. The 
inhibitor, if not selective, may pose serious toxicity and 
adverse effects complications, when used for treatment of 
chronic diseases. These undesirable outcomes can be 
accounted to the complete enzyme inhibition rather than its 
specific isoform. As different isoforms of JNK play diverse 
roles through modulation of a number of distinct pathways, 
this problem is very typical while selecting a JNK inhibitor 
for a certain disease. The high extent of similarity, 
commonly called as homology, in the binding pocket of the 
kinases makes the designing of selective and potent 
inhibitors a very difficult task [1]. But this challenge and 
involvement of kinases in modulating diverse array of 
functions makes it an interesting target to explore. In view 
of strengths of in-silico techniques in drug design and role 
of specificity in determining the biological activity of 
JNKs, we have attempted to implement diverse 
chemometric techniques to develop models which could aid 
design of specific JNK3 inhibitors. The reported study has 
also helped to determine the possible molecular interactions 
which takes place when a specific inhibitor binds to the 
active site of JNK3 and the significant changes that can be 
made in substitution pattern on the molecule in order to 
optimize the reported inhibitors and to achieve selectivity 
in their inhibitory action towards JNK3 enzyme.  
 

MATERIALS AND METHODS 
sketching of preliminary chemical structures and data 
set preparation 
The sketching of chemical structures of all the compounds, 
selected from the reported series of tri-substituted 
thiophenes [24] (Table 4 and Table 5), as JNK3 inhibitors, 

was performed using Chemdraw 4.0 followed by cleaning 
of their geometries using clean structure option of 
chemdraw and the structures of all the compounds were 
imported to the TSAR worksheet. TSAR, which is an 
integrated package, analyse the types of interactions of 
QSARs. IC50 values of the compounds which were 
determined experimentally and reported in the series were 
used and before importing into TSAR work sheet, changed 
into negative logarithm.  The negative log value of the 
experimentally determined IC50 values of the compounds 
were used for QSAR model development. Tools for 
Structure Activity Relationship (TSAR) used in the present 
study is an integrated analysis package often used in 
pharmaceutical and toxicological research. TSAR generates 
a mathematical model through the structural features of a 
molecule [25-28], and the derived output provide deeper 
insights into the relationship between the biological activity 
and chemical structure of the molecule.  

defining substituents and three-dimensional optimized 
structure building.  
The substitution pattern, which was found to exhibit least 
ambiguity and thus provided clear and explicit image for 
better understanding of the structural architecture of the 
molecule, was selected as a template. The three 
substituents, were defined around a common nucleus (R1, 
R2, and R3) (Figure 1) through the application of ‘‘define 
substituents’’ option present in the TSAR worksheet’s 
toolbar (version 3.3; Accelrys Inc., Oxford, England). Since 
some properties of the molecules are well represented 
through their 3D orientation, all the structures were 
converted 3D molecular structures of high quality was 
achieved using Corina [28]. CORINA program automatically 
generate molecule’s atomic co-ordinates in three 
dimensional form through information obtained by 
connection table or linear string [29]. Energy of all the 
molecules were calculated using Cosmic force field. 
Cosmic option in TSAR assess the total energy of a 
molecule by adding up van der Waals, coulombic, bond 
length, bond angle and torsion angle terms for each suitable 
set of atoms. The valence electrons from the molecular 
atoms are included in these calculations. The calculations 
were terminated after the energy gradient became smaller 
than 1 × 10-5 and 1 × 10-10 kcal/mol, respectively [30]. 

 
Figure 1: Depicting substitution pattern around thiophene 

nucleus. 
 
Calculation of descriptors and data reduction 
The main aim of descriptor calculation is to decode the 
information, about the physicochemical properties, encoded 
by the features or groups present in each molecular 
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structure, which are accountable for the specific biological 
activity of the molecule. TSAR typically has capacity to 
make calculations for up to 500 descriptors of different 
types, such as geometrical, electrostatic, constitutional and 
topological, obtained from the structure of the whole 
molecule as well as its defined substituents. Since the 
number of descriptors calculated are very high, it is 
mandatory to carry out data reduction in order to eliminate 
the incidence of chance correlations as well as data 
redundancy. The Correlation matrix was employed for data 
reduction as well as to identify the major descriptors, based 
on the criteria of minimum inter-correlation, to be included 
in final model. The degree or an extent of linear correlation 
between the two independent variables can be determined 
with the help of a Correlation coefficient [31]. If the values 
of coefficient, describing the inter-correlation of the two 
variables, was detected to be 0.5 or higher, in that case, the 
descriptor possessing a greater correlation values with 
biological activity was retained whereas the others 
exhibiting the lower values were removed from the data 
sheet. This step was carried out because when the values of 
correlation coefficient, which are basically the measure of 
the extent of fitting of the regression model, are somewhat 
closer to 1 indicates the model to be of a better fit. The 
descriptor remaining after pairwise correlation analysis 
were further sorted by employing backward elimination 
method. The descriptors with smaller t-value were removed 
from the data set [32]. 
Data set preparation and statistical analysis 
Finally, a set of four independent descriptors, manifesting 
good correlation with biological activity and no correlation 
with each other, were left. The selected descriptors 
including, Molecular surface area (whole molecule), 
Verloop B2 (Subst. 2), Verloop B4 (Subst. 3) and Kier 
Chiv4 (path/cluster) index (Subst. 1) were used for model 
development. The compounds of the series were segregated 
into the training set and the test set. Training set consisted 
of two-third of the molecules of the series and rest were 
included in the test set. The training set containing 25 
compounds (Table 4) was employed for building the 
QSAR models in order to obtain accurate relationship 
between the structural features and the biological activity. 
Whereas, the test set containing 7 compounds (Table 5) 
was used as a tool for validating the predictability of the 
developed model. MLR, PLS and NN were used as 
statistical tools to develop quantitative models with an aim 
to elucidate important structural features of the compounds 
and their role in determining the biological activity [33]. 
The variables with least inter-correlation were used in the 
MLR technique [34]. The cross-validation step was 
performed by employing leave-one-out (LOO) method in 
which removal of one compound at a time was done and 
the model obtained from the rest of the data set was used to 
make the calculations. The evaluation of statistical 
significance of the regression equations was performed on 
the basis of the values of the standard error of estimate 
(s) [35], Fischer’s ratio (F) [36] and conventional regression 
coefficient (r2) [37]. With an aim to validate the results 
obtained from MLR technique, the same data set was 
subjected to PLS analysis and the results were analysed. 

ANN was used to estimate the conformity of the obtained 
descriptors with the biological activity and hence, the 
usefulness of the developed model.  ANN in the present 
study is comprised of two hidden neurones, and an output 
layer represented by the experimentally determined 
logIC50 values of biological activity. The final architecture 
of the generated ANN model was (4-2-1). 
Cross-validation techniques  
In order to determine the precision with which a model has 
been developed, it must undergo a number of validation 
steps before it can be declared to be a reliable one [38]. 
Cross-validation is a conventional yet popular technique 
utilized to evaluate the reliability of the developed 
statistical models. According to this technique, a diverse 
number of data sets, by shuffling the number of compounds 
in the training set and the test set, are created. This method 
is typically known as “leave-one-out” (when a single 
molecule is removed from the training set and included in 
the test set and vice versa) and “leave-some-out” (when a 
number of compounds are removed from the training set 
and included in the test set and vice versa). For each data 
set, an input-output model was generated and its 
predictability was evaluated using the test set compounds.  
 

RESULTS 
In order to develop the 2D QSAR model, nearly 200 
classical descriptors, including geometric, electronic, 
topological, constitutive, etc., were generated for the 
selected series of compounds, listed in Table 4 and Table 
5, using TSAR software version 3.3. The initial model, 
including all the 200 descriptors upon regression analysis, 
showed very low value for r2cv (0.52), due to large and 
redundant data, implying inadequate internal predictability. 
Therefore, to build a reliable and informative set of 
descriptors, with no inter correlation but having good 
correlation with the biological activity, there was a strong 
need to abridge the data to get better clarity about the 
impact of physical properties, due to distinct substitutions 
around a common moiety, on the JNK3 inhibitory activity 
of the molecules. The correlation matrix technique was 
employed to delete the undesirable descriptors. Eventually 
four physicochemical parameters or descriptors were 
obtained: Molecular surface area (whole molecule), verloop 
B2 (subs 2), Verloop B4 (subs 3) and KierChiv 4 (subs 3) 
which were further evaluated to study the impact of diverse 
substituents on JNK3 inhibitory activity. Out of these four 
descriptors Verloop B2 (subs 2), Verloop B4 (subs 3) and 
KierChiv 4 (subs 3) manifested very high correlation values 
of 0.79 and 0.73 and 0.76 respectively with the biological 
activity. The Molecular surface area (whole molecule) 
showed relatively lower, correlation values than the other 
three descriptors as depicted in the correlation matrix in 
Table 1. Additionally, no inter-correlation was found 
among these descriptors, further supporting the fact that a 
good fit can be obtained when these four descriptors will be 
used in unification.  To further ascertain the significance of 
the descriptors used to build the model, their t-test values, 
coefficient values, jackknife standard error (SE), and 
covariance SE values (Table 2) were evaluated. The 
adequate values of all these parameters for all the four 
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descriptors confirmed the importance of an individual 
descriptor in determining the importance of structural 
architecture in exhibiting JNK3 inhibitory activity by a 
molecule. After gaining insight into the structural pattern of 
the molecules, exhibiting JNK3 inhibitory activity, and 
confirming the statistical soundness as well as relevance of 
the developed model, certain statistical tools were 
employed to further analyse the data to ascertain its validity 
as well as its reliability. 
After meticulous reduction of data, the compounds were 
divided into the training set and the test set to evaluate the 
predictive power of the 2D QSAR models generated using 
MLR, PLS and ANN. The activity of the training set 
compounds, used to build the model, was validated using 
the test set compounds that were not included to build the 
model. Similar methods of evaluation, as that used for 
training set compounds, were used for the test set 
compounds.  For a QSAR model, to be in concordance with 
the standards of the statistical parameters, must possess a 
minimum of 0.80 value for r2 [30]. The high r2 value for 
Equation 1 is 0.94 which is excellent statistically and 
indicates the soundness of the generated model. The model 
was further analysed for the determination of the outliers. 
But this model did not show the inclusion of any outlier. 
The actual and predicted values of the descriptors were 
close enough, which simply indicates that the extent of 
prediction using the developed QSAR equation was very 
close to the observed values (Table 4). The quality of the 
best 2D QSAR model was described by the value of certain 
statistical parameters (Table 3 ) and includes: r =0.97, r2 
=0.94, r2CV =0.88, s =0.22, f =89.29. Where, r measures 
the extent of fitting of the developed model. Nearer is its 

value to 1, the better is the quality of fit of the generated 
model. The statistical parameter r2 describes the percent 
data present in a specific equation. The value of r2 for this 
model was found out to be 0.94 which represents 94% 
variance in the biological activity of the used data. The 
predictability of the developed model was further assessed 
by its r2CV (cross validated r2). Its value for the model 0.88 
clearly indicates the excellent predictability of the 
generated regression equation. The value obtained for the 
standard deviation parameter ‘s’ was 0.22 and its low value 
affirms that the error in the regression is minimal for this 
developed model. The F-test is basically defined as the 
ratio of variance manifested by the developed model and 
variance that arise due to the regression error. The higher is 
its value, more statistically sound a model is. Here, for the 
generated model, its value 89.24 further supports the notion 
of the statistical significance of the model. The developed 
model was further used to interpret the structural 
dependency of the biological activity exhibited by the 
selected set of JNK3 inhibitors. The model consisted of 25 
compounds in the training set and 7 compounds in the test 
set and generated the following equation: 
Equation 1 
Original Data: Y = -0.0031632297*X1 - 1.5969231*X2 - 
1.5210433*X3 + 2.240274*X4 + 3.7058432 
Standardized Data: Y = -0.12631048*S1 - 0.411349*S2 - 
0.36352766*S3 + 0.30546683*S4 - 2.0672114 
Where X1 = Molecular surface area (whole molecule), X2 
= Verloop B2 (subs 2), X3 = Verloop B4 (subs 3), X4= 
KierChiv 4 (subs 3) and Y represents the biological 
activity. 
 

 
Table 1: Representing the correlation matrix depicting the relationship of the derived descriptors with the biological activity. 

 -logIC50 
Molecular 

surface area 
(Whole molecule) 

Verloop B2 (R2) Verloop B4 (R3) 
Kier 

Chiv4(path/cluster) 
index (R1) 

-logIC50 1 0.18633 -0.79616 -0.73012 0.76163 
Molecular surface area 
(Whole molecule) 0.18633 1 -0.22954 -0.43716 0.31488 

Verloop B2 (R2) -0.79616 -0.22954 1 0.46612 -0.62156 
Verloop B4 (R3) -0.73012 -0.43716 0.46612 1 0.43442 
Kier Chiv4(path/cluster) 
index (R1) 0.76163 0.31488 -0.62156 0.43442 1 

 
 

Table 2: Representing the relevance of descriptors entered in the selected model. 
Descriptors Coefficienta Jackknifeb Covariance SEc t-valued t-probabilitye 

Molecular surface area (Whole 
molecule) -0.0031632 0.0010174 0.0013164 -2.4029 0.026088 

Verloop B2 (R2) -1.5969 0.47948 0.27511 -5.806 1.1148e-005 
Verloop B4 (R3) -1.521 0.39171 0.21269 -7.1514 6.2991e-007 
Kier Chiv4(path/cluster) index 
(R1) 2.2403 0.46315 0.49884 4.491 0.00022343 
  a Represents the regressions coefficient for each variable in the QSAR equations. 
 b Represents an estimate of the standard error on each regression coefficient derived from a jack knife method on the final   regression 
model.  
 c Represents an estimate of the standard error on each regression coefficient derived from covariance matrix.  
 d Is the Measure of the significance of each variable included in the final model. 
 e Represents statistical significance for 𝑡𝑡 values. 
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Table 3: statistical parameters of the models generated. 
 Test set compounds r r2 r2CV s value f value 

Final Model 5,6,17,19,22,33,43 
 

0.97 0.94 0.88 0.22 89.24 
 

 
Figure 2: MLR graph showing plot between the observed vs 

predicted activity. 
 

 
Figure 3: PLS graph showing plot between the observed vs 

predicted activity. 
 

 
Figure 4: ANN graph showing plot between the observed vs 

predicted activity. 

In addition to MLR approach, PLS method was used to 
obtain the regression equation. This step was performed to 
further validate the results derived from MLR and to 
ascertain that the results obtained from both the methods 
are comparable i.e. they show minimal variation. 
The output that equation from PLS gave, was also 
evaluated on the basis of statistical parameters such as r2 to 
assure the soundness of the generated model in terms of 
statistics.  
Regression equation obtained by PLS method generated: 
Equation 2 
Y = -0.0040894211*X1- 1.4459748*X2- 1.8684793*X3+ 
2.5747774*X4+ 4.1907516 
The closeness in the values of the observed and predicted 
activity of the training and the test set of the molecules ( 
Table 4 and Table 5) clearly indicates the relevance of the 
equation obtained through MLR and PLS methods for 
statistical evaluation. Figure 2 and Figure 3 depicting the 
graphs between the observed activity versus predicted 
activity for the training and test set compounds obtained 
from MLR and PLS method respectively.  
To achieve the goal of this study, that is, to design a 
validated 2D QSAR model manifesting reliability and 
robustness, Artificial neural network (ANN) method was 
employed to determine the stability of the 2D QSAR model 
generated using MLR and PLS approach. The observed 
activity versus predicted activity graph of ANN as depicted 
in Figure 4 further corroborates the developed model to be 
of excellent statistical quality. The dependency plots 
(Figure 5, Figure 6, Figure 7 and Figure 8) obtained from 
NN (Neural Network) eventually made the prediction of the 
dependence of biological activity on the structural 
architecture even more reliable. 
Equation 1 and Equation 2 depicts that Molecular Surface 
Area (Whole Molecule), Verloop B2 (subs 2), Verloop B4 
(subs 3) and Kier Chiv 4 (Subst. 1) are the major 
independent physicochemical parameters comprising the 
model and manifesting excellent correlation with the 
biological activity. The negative coefficients of the 
Molecular surface area (whole molecule), Verloop B2 
(Subst. 2), Verloop B4 (Subst. 3) indicates that decreasing 
the values of these descriptors may lead to augmented 
biological activity, whereas the positive coefficient of the 
KierChiv 4 (Subst. 3) depicts that increasing its value can 
improve the JNK3 inhibitory activity Figure 9. 
Lipinski’s rule of five 
For any molecule to possess therapeutic relevance or 
property of the drug-likeness, it must obey ‘‘rule of five’’ 
given by Lipinski. It is an empirical approach 
conventionally employed for predicting drug like properties 
in a molecule and clearly states that molecules with a 
molecular weight greater than 500, log P greater than 5, 
more than 5 hydrogen bond donors, and more than 10 
hydrogen bond acceptors exhibit poor pharmacokinetics 
properties in terms of absorption or permeation through 
biological membrane [39]. This rule explains only the 
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molecular properties associated to the pharmacokinetics of 
molecules, i.e., the absorption, distribution, metabolism, 
and excretion (ADME) of bioactive compounds in a higher 
organism. It does not deal with any of the 
pharmacodynamics aspect of the molecules, which involves 
action of the drug on the cells or on microorganisms and 
other parasites within or on the body. The parameters 

included in Lipinski’s rule of five were calculated for the 
selected series of molecules and no compound was found to 
have violated the above mentioned set of rules given by 
Lipinski (Table 7). This explicitly indicates that all 
molecules exhibit adequate pharmacokinetic profile. 
 

 
Table 4: structures of the training set compounds, used to build the model, along with their observed and predicted values. 

Name of the 
compound R1 R2 R3 

-logIC50 
(nm) 

PREDICTED VALUES 
MLR PLS ANN 

4 

OMe  

Me 
O OMe  

-2.8451 -2.79415 -2.84003 -2.83904 

7 

OMe  

CF3 

O OEt  

-4.58883 -4.68435 -5.00203 -4.57564 

8 

OMe  

CN 

O OEt  

-2.49136 -2.77477 -2.68022 -2.57305 

9 

OMe  

CCH 

O OEt  

-3.48001 -3.08216 -2.96259 -3.42912 

15 

N  

Me 
O O

 

-2.41996 -2.36231 -2.38199 -2.31726 

16 

O

N

N

CH2CH2CH3

 

 
 

Me O O

 

-2.70243 -2.62228 -2.72982 -2.68266 

18 

O

N

CH2CH2CH3

 

Me 
O O

 

-2.35411 -2.43635 -2.50476 -2.39388 

20 
N

N  

Me 
O O

 

-2.20952 -2.40596 -2.40306 -2.37617 
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Name of the 
compound R1 R2 R3 

-logIC50 
(nm) 

PREDICTED VALUES 
MLR PLS ANN 

21 

N  

Me 
O O

 

-2.04139 -2.19049 -2.18177 -2.13982 

23 
N O

 

Me O O

 

-2.09691 -1.91241 -1.85852 -1.67053 

27 

OMe  

Me N

N

NH

Me  

-2.66745 -2.82221 -2.90116 -2.88521 

28 

N  

Me N

N

NH

Me  

-2.51055 -2.44376 -2.45017 -2.3823 

29 O

N

CH2CH2CH3

 

Me N

N

NH

Me  

-2.29447 -2.38729 -2.49537 -2.37786 

30 
N

N  

Me N

N

NH

Me  

-2.77379 -2.292 -2.32821 -2.34988 

31 

N  

Me N

N

NH

Me  

-1.90309 -2.19487 -2.19489 -2.14963 

32 

N  

Me N

N

NH

Me  

-2.15534 -1.73336 -1.7743 -1.98488 
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Name of the 
compound R1 R2 R3 

-logIC50 
(nm) 

PREDICTED VALUES 
MLR PLS ANN 

34 
N O

 

Me N

N

NH

Me  

-1.39794 -1.2301 -1.22606 -1.40955 

44 
N O

 

Cl 
N

N

NH

 

-0.69897 -0.84762 -0.75832 -0.84101 

45 
N O

 

CN 
N

N

NH

 

-0.77815 -0.77887 -0.63378 -0.60757 

46 

N
 

Br 
N

N

NH

 

-1.51851 -1.77444 -1.7184 -1.55662 

47 

N
 

Cl 
N

N

NH

 

-1.04139 -1.19444 -1.14901 -1.2058 

48 

N
 

CN 
N

N

NH

 

-0.8451 -0.92824 -0.82612 -0.84391 

49 

N  

Br 
N

N

NH

 

-1.53148 -1.49011 -1.50711 -1.64672 

50 

N  

Cl 
N

N

NH

 

-1.25527 -1.25601 -1.22153 -1.30553 

51 

N
 

CN 
N

N

NH

 

 
 

-1.07918 
-1.04175 -0.95106 -0.93661 
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Table 5: Representing test set compounds, used to validate the model, along with their observed and predicted activities. 
Name of the 
compound R1 R2 R3 

-Log IC50 
(nm) 

Predicted values 
MLR PLS ANN 

5 

OMe  

Et 
O OMe  

-3.95952 -4.3446 -4.79824 -3.98806 

6 

OMe  

cPr 

O OEt  

-3.98318 -4.43786 -4.56025 -4.45665 

17 

O

N

CH2CH2CH3

 

Me O O

 

-1.99564 -2.40075 -2.47921 -2.36455 

19 
H
N

 

Me O O

 

-3.0086 -2.15079 -2.13414 -2.08324 

22 

N
 

Me O O

 

-1.79239 -2.1256 -2.10688 -2.0274 

33 
N O

 

Me N

N

NH

Me  

-1.39794 -2.02173 -1.96388 -1.73991 

43 
N O

 

Br N

N

NH

 

-1.44716 -1.21543 -1.14936 -1.1001 

 
 

DISCUSSION 
Verloop descriptors define the optimal volume and shape 
desirable to have a molecule aligned with the active site of 
the receptor and show binding affinity towards it. Verloop 
B2 (at R2) and Verloop B4 (at R3) are negatively 
contributing towards the model suggesting the increase in 
the width, hence, shape or volume of the molecule will lead 
to reduced biological activity of the compounds. Based on 
such information we can infer that those groups, 
contributing towards the substitution pattern of the 
molecule, which can increase the shape as well as volume 
distribution at the R2 and R3 positions is expected to make 
a significant contribution towards drop in activity profile of 
a molecule.  

Molecular surface area defines the sum total of not only the 
total area that a molecule occupies but also the polar area of 
that molecule. And for a molecule to cross blood brain 
barrier (BBB), which is commonly through passive 
transport, apart from having an optimal logP (partition 
coefficient) value, it must have less molecular weight and 
also must be less polar. Also, in the present model, through 
the negative correlation of Molecular Surface area 
descriptor, this has been indicated that by decreasing the 
total surface area including the polar surface area, which is 
majorly occupied by nitrogen and oxygen atoms, the 
activity profile can be improved.  
Furthermore, the shape of the molecule is responsible for 
its orientation and hence its interaction with the binding 
domain of the receptor whereas, the mass plays a crucial 
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role in ADME (absorption, distribution, metabolism, 
excretion) properties and in some cases, is also responsible 
for toxicity profile of the molecule. Therefore, a drug to 
possess both safety and efficacy, must have an optimal size 
and shape. 
Kier Chiv4 (path/cluster) index (whole molecule) belongs 
to the molecular connectivity indices class of descriptors. 
Usually, steric hindrance caused by the bulky groups in the 
bonding process of a molecule with a receptor is 
undesirable, but in certain cases an optimal level of bulk 
and branching aids in better orientation of the compound 
thus enhancing the bonding interactions of a molecule with 
the receptor. A molecule is expected to exhibit strong 
interactions, with the binding domain of the receptor, only 
if a favourable substitution pattern along with optimal 
branching at proper position is present.  As Kier Chiv4 
(path/cluster) index is having the positive correlation with 
the bioactivity, increasing the bulk through replacements 
with bulky groups or through branching at this particular 
position will have positive impact on the biological activity 
profile of the compounds.    
 

 
Figure 5: Dependency plot of Molecular Surface Area (Whole 

molecule) descriptor with Experimental activity. 
 

 
Figure 6: Dependency plot of Kier Chiv4 (path/cluster) index 
descriptor (Subst. 1) descriptor with Experimental activity. 

 

 
Figure 7: Dependency plot of Verloop B2 (Subst. 2) descriptor 

with Experimental activity. 
 

 
Figure 8: Dependency plot of Verloop B4 (Subst. 3) descriptor 

with Experimental activity. 
 

S

R2

R3

N
H

O

R1R1

R2

R3

Molecular surface area (Whole molecule)

Verloop B2 (Subst. 2)

Verloop B4 (Subst. 3)
Kier Chiv4
(path/cluster) index
(Subst. 1)  

Figure 9: Relevance of descriptors on substitution pattern 
around a common nucleus. 

 
Figure 10: significance of the descriptors evaluated through 
comparison between the substitution around the most active 
compound (IC50 7nm) with the least active compound (IC50 

38800nm). 
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Table 6: values of the descriptors for individual compounds. 
Name of the compound Molecular surface area 

(whole molecule) Verloop B2 (subs 2) Verloop B4 (subs 3) KierChiv 4 (subs 3) 

4 294.682 2.09779 2.02262 0.383284 
5 320.969 2.00424 3.08551 0.383284 
6 0 2.5611 3.22968 0.383284 
7 339.552 2.42569 2.82775 0.383284 
8 327.953 2.37467 1.65 0.383284 
9 329.275 2.55983 1.65494 0.383284 
15 344.27 2.0588 2.02749 0.621575 
16 401.41 2.00014 2.02969 0.545889 
17 430.474 2.02243 2.02537 0.698765 
18 424.358 2.05526 2.02702 0.698765 
19 300.876 2.0185 2.02128 0.621775 
20 297.775 2.07737 2.02109 0.545329 
21 304.974 2.01965 2.02615 0.613964 
22 311.839 2.02691 2.0212 0.654437 
23 327.768 2.05954 2.03903 0.807468 
27 320.734 2.0564 2.03035 0.383284 
28 341.324 2.11945 2.02349 0.621575 
29 455.694 1.96899 2.02017 0.698765 
30 317.397 1.95878 2.02986 0.545329 
31 314.376 2.00834 2.02134 0.613964 
32 311.326 1.72337 2.02345 0.613964 
33 339.85 2.12043 2.02186 0.807468 
34 322.256 1.65852 2.02295 0.807468 
43 319.796 1.77131 1.9 0.807468 
44 312.548 1.65059 1.8 0.807468 
45 321.841 1.73201 1.65 0.807468 
46 302.876 1.9402 1.9 0.654437 
47 306.878 1.66433 1.8 0.654437 
48 300.212 1.65371 1.65 0.654437 
49 322.509 1.66649 1.9 0.613964 
50 302.523 1.65473 1.8 0.613964 
51 300.259 1.66791 1.65 0.613964 

Table 7: Depicting values of various parameters constituting Lipinski’s rule of five. 
Name of  the 
Compound 

ADME 
weight(Whole 

molecule) 

ADME H-bond 
Acceptors 

ADME H-bond 
donors ADME log P ADME violations 

4 319.4 4 1 2.1557 0 
5 333.43 4 1 2.552 0 
6 359.47 4 1 2.721 0 
7 387.4 4 1 2.9138 0 
8 344.41 5 1 1.896 0 
9 343.42 4 1 2.2126 0 
15 366.46 4 1 3.2458 0 
16 413.53 5 1 2.4939 0 
17 430.61 5 1 2.9088 0 
18 416.58 5 1 2.5125 0 
19 328.41 3 2 2.1816 0 
20 341.41 5 1 1.585 0 
21 340.42 4 1 2.4978 0 
22 340.42 4 1 2.5636 0 
23 358.44 4 1 1.6098 0 
27 342.45 4 2 2.4641 0 
28 389.51 4 2 3.5542 0 
29 453.66 5 2 3.2172 0 
30 364.46 5 2 1.8934 0 
31 363.47 4 2 2.8062 0 
32 349.44 4 2 2.6577 0 
33 381.49 4 2 1.9182 0 
34 367.46 4 2 1.7697 0 
43 432.32 4 2 2.0943 0 
44 387.87 4 2 1.8205 0 
45 378.44 5 2 1.1675 0 
46 414.3 4 2 3.0481 0 
47 369.85 4 2 2.7743 0 
48 360.42 5 2 2.1213 0 
49 414.3 4 2 2.9823 0 
50 369.85 4 2 2.7085 0 
51 360.42 5 2 2.0555 0 
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In depth analysis of the derived descriptors and their 
correlation with the structural architecture of the molecules 
helped in surfacing of the interesting facts. Upon 
comparison of the least active molecule with that of the 
most active compound of the selected series we observed 
that in compound 7 (least active), R1 is substituted with the 
methoxy benzene, R2 with methyl group and R3 with an 
ester group all of which increased the shape and volume of 
the molecule and eventually resulted in enhanced surface 
area. Whereas in the most active compound, compound 48, 
methoxy benzene is replaced with a fused heterocyclic 
substituent and ester group with a triazole ring both of 
which reduced the width and volume of the molecule, thus, 
resulting in profound increase in the JNK3 inhibitory 
activity. Interestingly, both ester and triazole ring have 
comparable molecular mass and, thus, no additional bulk 
was introduced to the molecule. Therefore, a simple 
augmentation in bulk or mass cannot be accounted for an 
improved activity profile. The possible reason for improved 
activity, perhaps, could be the flat structure of the triazole 
ring, which leads to compression in the shape of the 
molecule, that allows it to conveniently enter into the 
binding site and align in such a way that it fits snugly with 
the walls of the active site. The shape of the triazole ring, 
hence, can be attributed for the better orientation of the 
molecule that capacitate it to show better interactions with 
the binding domain. In addition to this, compound 48 has 
lower molecular mass (360.42) than compound 7 (387.4) 
that may also be accounted for the discernible 
augmentation in the activity. Also, the compounds bearing 
chloro and cyano groups were found to be the most potent 
and those bearing bromo group exhibited comparatively 
less potency. The dramatic increase in the biological 
activity can clearly be attributed to the fact that chloro and 
cyano groups being highly electronegative, decreased the 
overall nucleophilicity of the molecule to a greater extent 
than the bromo group, which is comparatively less 
electronegative. The decreased nucleophilic character of 
the molecule eventually capacitated the molecule to accept 
the electron pairs and make covalent bonds with the 
receptor binding domain. A point must be made here, that 
positive correlation of Kier Chiv4 (path/cluster) index at R1 
indicates an increase in bulk at this position would lead to 
increase in activity but Molecular surface area, which is in 
negative correlation with the whole molecule predicts the 
decrease in activity with overall increase in volume or size 
of the molecule (Figure 10). Therefore, an optimal increase 
in the bulk or branching only at certain positions will bring 
about an increase in bioactivity of the molecules. The 
above results explicitly indicates that all the descriptors that 
entered the final 2D QSAR model were significant and 
their correlation with the biological activity concurred well 
to the substitution present in the structures of the selected 
series of the JNK3 inhibitors. The in-depth study of these 
physicochemical parameters has provided substantial 
insights to design better chemical scaffolds in term of 
selectivity and efficacy. This model has provided sufficient 
information to design new molecules and have ignited a 
hope that through incorporating the appropriate features, 
deduced to be important through these descriptors, 

designing of JNK3 inhibitors with a better selectivity 
profile can be easily achieved. 
 

CONCLUSION 
Through the proposed study, an effort has been made to 
analyse the reported JNK3 inhibitors and to get insight into 
their structural architecture responsible for their specific 
JNK3 inhibitory activity, and thereby to suggest the 
beneficial or detrimental impact of the substitution pattern 
on the biological activity. The scrupulous evaluation of the 
chemical structures and the physicochemical descriptors 
derived from them capacitated us to understand the 
dependence of the biological activity on the structural 
architecture of the molecules. The major factor that govern 
the efficacy of a CNS targeting drug is its ability to cross 
Blood Brain Barrier (BBB) which in turn depends on 
optimal logP (partition coefficient), Molecular mass and 
polar surface area. The developed model explicitly 
indicated that an introduction of optimal bulk or mass 
distribution at certain positions, and not at any position, 
will lead to an increased activity profile of the selected set 
of compounds. Additionally, the shape of the molecules, 
that determines the efficacy with which a molecule aligns 
itself with the binding domain of the active site, was found 
to be a dominating factor in determining the potency of 
these JNK3 inhibitors. Also, decreasing the overall 
nucleophilic character, through replacement of electron 
donor groups with electronegative groups resulted in 
overall increase in the activity. Therefore, through this 
work, we concluded that when molecules are substituted 
with those groups, at certain positions, that increase the 
mass of the molecule but compresses its shape, hence, its 
surface area and those that decreases the nucleophilic 
character of these molecules can, possibly, contribute 
positively towards increasing the bioactivity and selectivity 
and, hence, exhibiting better JNK3 inhibitory activity.  The 
proposed study, capacitated us to gain insights into the 
structural dependency of the biological activity and thereby 
to suggest possible replacements that, perhaps, would 
eventually lead to optimized JNK3 inhibitors with better 
activity as well as selectivity profile.  
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