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Abstract 
This article describes mathematical modeling formation of higher-order acoustic harmonics in the nonlinear medium. Two 
problems are considered: propagation of the higher harmonics in the case of the plane wave (amplitude was deduced from 
nonlinear Earnshaw's equation) and the two-dimensional ultrasonic beam (KZK equation was used for deducing). Simulating 
change of amplitudes of the higher harmonics is carried out in biological subjects with distribution of a nonlinear parameter 
that is amenable to the Gaussian law. The results of numerical calculations of the dependences of the change of amplitudes of 
the higher order harmonics on a pattern of distribution of the nonlinear parameter in biological tissues are presented. 
Dependence which had been obtained enabled to proceed the inverse problem: imaging internal structures of biological objects 
using a nonlinear parameter as an informative indicator reflecting the properties of the medium. 
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INTRODUCTION 
Research of nonlinear properties of biological tissue enables 
the use of nonlinear parameter for the purposes of imaging 
internal structures of the human body [1; 2]. The research 
results of healthy and pathological tissues of pig’s liver 
showed considerable changes of the nonlinear parameter in 
them from 9 to 20% in comparison with linear sound 
propagation characteristics: velocity from 2 to 3.8%, density 
about 1% [3]. This allowed to conclude that the nonlinear 
parameter was much more sensitive to changes in the status of 
biological tissue. Comparing the deviation of the 
nonlinearity parameter and linear characteristics, it can be 
assumed that its use as a diagnostic parameter for systems 
imaging has significant advantages. [4; 5; 6; 7]. The most 
perspective tomographic methods are based on nonlinear 
parameter. However, the use of currently available 
tomography schemes for formation of imaging medical 
systems is not always possible. 
Attempts to implement various schemes of tomography 
have not led to the creation of optimal visualization 
systems [8]. Most of the current schemes of ultrasound 
tomography make use of linear dependence of amplitude 
increase of the second harmonic and waves of combination 
frequencies. These methods predominantly based on using 
the techniques of ultrasonic beam approximation [9]. The 
main disadvantages of such schemes are low resolving 
power and long time to perform researches. Parallel use of 
wave approach along with the radiation will improve the 
quality of the resulting image [10]. A resolution-limit of 
ultrasonic wave in linear tomography systems can range up 
to parts of a wave length, and a minimum of time for 
measuring is less than a second. However such systems 
feature high sophistication of hardware implementation and 
processing of obtained data. It is necessary to find new 
promising, from the viewpoint of practical implementation, 
quantitative evaluation methods of nonlinear parameter 
distribution pattern in biological mediums. 

The paper presents results of stimulating the amplitude 
change of the higher harmonic of acoustical signal passing 
through the inclusions with the heterogeneous distribution 
of the nonlinear parameter.  
An acoustical wave propagation process is described by 
three types of the component terms in the equation shown 
below: linear terms, nonlinear ones of the even powers and 
odd ones. To describe an acoustical wave field it is 
necessary to consider all the terms of harmonic expansion: 
the first term of the even power (of the squared 
nonlinearity) and the odd power (of the cubed 
nonlinearity). The following terms of expanding the even 
and odd powers can be considered as additive corrective 
pieces to the first terms of the corresponding nonlinearities. 
Let us assume: 
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where ε(r) is the squared nonlinear parameter; ζ(r) is the 

cubed nonlinear parameter. 
Let us consider the two cases of an acoustical wave 
propagation process: for one-dimensional wave in which 
the signal amplitude distribution is taken into account only 
in a wave line, and for a two-dimensional ultrasonic beam 
in which the changes were taken into account relating to the 
transverse distribution of amplitudes.  

2. CASE OF THE ONE-DIMENSIONAL WAVE
An amplitude change will occur along Z-axis
corresponding to a wave line in the one-dimensional wave
case. To calculate amplitude of the one-dimensional signal
we use nonlinear Earnshaw’s equation written down in the
form as follows [11; 12]:
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Then substitute equation (4) into the right part of equation 
(3), we’ll obtain: 
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   is the cubed nonlinear 

term. 
Using Khokhlov’s method of a slowly changing profile, we 
will simplify equation (5) and deduce amplitude for the 
second and third harmonics.  
For this purpose we will introduce a small parameter 
~ 1 ∙ ~ 1 ∙ 2 / ≪ 1 considering that 

displacement amplitude of particles of the medium should 
be small in comparison with the wave length.  
Let us now turn from the initial coordinates x and t to the 
accompanying coordinates x1 and / , 

/ , . 
Then it will be: 
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Having substituted the derivatives into equation (5) we’ll 
obtain: 
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If we neglect all the terms of μ2 and μ3 order we’ll obtain: 
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 is the particle velocity, ∙ : 
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(8) 
If it is assumed that 1 /2 is squared nonlinear 
parameter, and 1 ∙ 2 /6  is cubed practical 
implementation of d nonlinear parameter, then we will 
obtain: 
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Obtained equation (9) is simpler than equation (5), 
therefore, we will use it for separating out the solution of 
the second and third harmonics. 
An equation of the travelling wave in the first 
approximation takes the form: 
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Using the method of successive approximations, we obtain 
the solution of equations for the second and third 
harmonics: 
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We considered the case when the one-dimensional acoustic 
wave had passed through the heterogeneous inclusion. 
Nonlinear parameter distribution in this inclusion changed 
according to the Gaussian law according to the equation: 
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where z is the wave propagation axis. 
We assume that dependence of an amplitude change of the 
second harmonic, as the nonlinear parameter changes in 
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heterogeneity, reflects the change of ratios 
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  varying with the distance where: 

 is the amplitude of the second harmonic passed 
through biological tissue with heterogeneity;  

 is the amplitude of the second harmonic passed 
through biological tissue with the homogeneous 
distribution of the nonlinear parameter;  

 is the amplitude of the third harmonic passed 
through biological tissue with heterogeneity;  

 is the amplitude of the third harmonic passed 
through biological tissue with the homogeneous 
distribution of the nonlinear parameter. 
To calculate the amplitude change of the second harmonic, we 
use equation (8), and we will solve this through  for 

 and through  for .The solution to the 
equations take the forms: 
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i ‒Δγ. 
The calculations are performed for the following 
parameters: /2 3.5 MHz; 2, 7, 12; 6; 

1.5 mm. 

The ratio 
)(

)(

02

2

zU

zU



  is shown in figures 1 and 2 for various 

values of variations of the nonlinear parameter. 
We use equation (9) to calculate the amplitude change of 
the third harmonic, and we will solve it by using  for 

 and  for . 
Then: 
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Figure 1. Amplitude change of the second harmonic when 

passing through heterogeneity at the Gaussian distribution of 
the nonlinear parameter for , ,  that correspond to 

curves 1, 2, and 3, respectively. 

  
Figure 2. Amplitude change of the third harmonic when 

passing through heterogeneity at the Gaussian distribution of 
the nonlinear parameter for , , ; . , . ,  

that correspond to curves 1, 2, and 3, respectively. 

The ratio 
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  is shown in figure 3 and 4 for various 

values of variations of the nonlinear parameter. 

 
Figure 3. Amplitude change of the third harmonic when 

passing through heterogeneity at the Gaussian distribution of 
the nonlinear parameter for , ,  that correspond to 

curves 1, 2, and 3, respectively. 
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Figure 4. Amplitude change of the third harmonic when 

passing through heterogeneity at the Gaussian distribution of 
the nonlinear parameter for , , ; , . , а = 1, 

2.5, 2 that correspond to curves 1, 2, and 3, respectively. 
 
 The results of the performed calculations graphically 
shown in figure 1-4 demonstrated that at changing  by 
10 one could see a change of the ratio amplitude of the 
second harmonic by 1.5, the ratio of the amplitude of third 
harmonic changed by 1.7; this points to the fact that the 
third harmonic is more sensitive to the change of the 
nonlinear parameter. 
 
CASE OF THE TWO-DIMENSIAL ULTRASONIC 
BEAM 
Geometry of the solvable problem for the case of a two-
dimensional ultrasonic beam is shown in figure 5. 
Distribution of the nonlinear parameter was being 
considered with relation to the traverse X-coordinate taking 
into account the wave distance passed along Z-axis. 

 
Figure 5. Geometry of the solvable problem. 

 
In figure 5 R is the direction vector, R1 is the radiator, R2 is 
the receiver,  is the value of the nonlinear parameter of 
adjoining tissues,  is the distribution of the nonlinear 
parameter in the heterogeneous inclusion. 
We assume that heterogeneous inclusion has the ellipse-
shaped form with the standard Gaussian distribution of the 
nonlinear parameter, then: 
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where  is the nonlinear parameter of a homogeneous 
medium,  is the maximal variation of the nonlinear 
parameter of the heterogeneous inclusion from the 
homogeneous medium. 
The propagation of the two-dimensional focused ultrasonic 
beam is considered by us in relation to the Khokhlov-
Zabolotskaya-Kuznetsov equation (KZK) [13]: 
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For the second harmonic:
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where ),()(4),( 2
2   rzprrzs   is the 

function of the secondary radiation sources  
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For the given problem: 
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As is the case with the one-dimensional acoustical wave, 
we deduce the distribution of the nonlinear parameter in 
heterogeneity from equation (1).  
We do the same for  and  taking into account the 
transverse distribution.  
The equation of amplitude change of the second harmonic 
of the wave passed through biological tissue with the 
homogeneous distribution of the nonlinear parameter is as 
follows: 
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The equation of amplitude change of the second harmonic 
of the wave passed through the homogeneous biological 
tissue with the homogeneous distribution of the nonlinear 
parameter takes the form: 
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The calculations are performed for the following 
parameters of the acoustic field and medium: /2 3.5 
MHz; 4; 6; 8 mm. 
The result of simulating the amplitude change of the 
second harmonic along X-axis is shown in figure 6. 
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Figure 6. Amplitude change of the second harmonic of 

ultrasonic beam along transverse X-axis. 
 
For the third harmonic we have: 
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where ),()(8),( 3
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function of the third order sources:  
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For the given problem we have:  
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The amplitude change of the third harmonic of the wave 
passed through biological tissue with the homogeneous 
distribution of the nonlinear parameter takes the form: 





n

a

r
iG

neAz
c

U
2

2

)1(

02
0

3

03 2   (31) 

The amplitude change of the third harmonic of the wave 
passed through the heterogeneous biological tissue is as 
follows: 
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The calculations are performed for the following 
parameters of the acoustic field and medium: : /2 3.5 
MHz; 4; 6; 8 mm. 
The result of simulating the amplitude change of the third 
harmonic along the transverse X-axis is presented in 
figure 7. 
The obtained results of simulating the transverse 
distribution of the second harmonic when propagating the 
two-dimensional acoustic beam through biological tissue 
with heterogeneity allowed reproducing the distribution of 
the nonlinear parameter along the wave propagation line. 

The performed calculations demonstrated that the third 
harmonic was more sensitive to changes of the nonlinear 
parameter about by 2.2. 
 

 igFigure 7. Amplitude change of the third harmonic of 
ultrasonic beam along transverse X-axis. 

 
 

4. CONCLUSION 
Simulating of the amplitude change of the higher 
harmonics of acoustical signal was performed when 
passing through biological tissues with the homogeneous 
distribution of the nonlinear parameter. The two cases of 
wave propagation were considered: one-dimensional wave 
( distribution of signal amplitude was taken into account 
only if it was in the direction of propagation) and two-
dimensional ultrasonic beam; the changes were considered 
in relation to the transverse distribution of amplitude. 
The obtained results of calculations allow reasoning that 
the distribution of the nonlinear parameter coincides with 
the amplitude change of the higher harmonics of acoustical 
signal, which are formed by nonlinear effects of acoustical 
wave interaction with biological medium. It has been found 
that the third harmonic level is low with regard to 
attenuation. Therefore, measurements of its parameters by 
experiment leads are problematic. High sensitivity of the 
third harmonic in comparison with the second harmonic 
will not give sufficient gain for designing system of 
imaging. 
On the basis of the obtained regular relationships, it is 
possible to draw some conclusions: 
- During the progress of the description of propagation 

of acoustical waves in biological tissues it is necessary 
to consider nonlinearities of the even power (a squared 
nonlinearity) and the first nonlinearity of an odd power 
(a cubed nonlinearity), as all the following terms of the 
even and odd orders of harmonic expansion can be 
considered as additional redetermining pieces to the 
corresponding first terms of the squared and cubed 
nonlinearities; 

- The performed calculations make it possible to select a 
technique for solving a reverse problem that follows: 
finding the distribution of the nonlinear parameter in a 
homogeneous biological subject with subsequent 
imaging of its internal organ structures. 
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