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Abstract 
Bio signal data acquisition and subsequent processing became not an option for neuroscience studies, but the requirement. A 
number of publications appeared during last decade, which brought some new core conceptions of brain-machine interfaces 
(BMI) as a valuable tool for science, medical and industry use and even entertainment. The BMI technology is far from 
maturity yet, but the number of real world applications grows rapidly. Because of the interest to close the gap between sensor 
device and driven equipment, various approaches were proposed. The purpose of this article is to propose the concept of a 
universal smart interface device based on current requirements for BMI system applications. This study consists of three main 
parts. 

First, we briefly introduce the background and development of mind-controlled robot technologies and its applications. We 
focus on main requirements and features needed to be implemented in BMI devices. 

Then, a structural scheme of a portable hybrid software-driven BMI device will be briefly explained. 

And, after that, we’ll review main methods and applications of BMIs in common, and proposed device, in particular, as a 
driver for a number of standard neurosignal-driven equipment and different data-processing systems. 
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INTRODUCTION 
A Brain-Computer Interface (BCI) is a device that 

allows to control a computer by brain activity only, without 
the need for muscle control. However, 
electroencephalography (EEG) as a primary data source for 
such interfaces can also be reinforced with additional 
methods like electromyography (EMG), 
electrooculography (EOG), different acceleration and 
position sensors etc. That concept of merging data from 
different sources proved to increase efficiency of 
classification and data processing [1], as it lets to use 
different noise compensation algorithms, essential for real-
world applications.  

Recent studies clearly shows the diversity of 
concepts for such human-machine interaction devices, 
ranging from older tension/resistance tele-manipulation 
frameworks [2] to modern event-related potentials EEGs 
hybridized with other data channels [3]. The combination 
of these data channels utilized to generate drive commands 
for different devices like wheelchairs [4], exoskeletons [5], 
smart orthosis and prostheses [6], stimulation and feedback 
systems [7] and even computer game platforms [8]. 
Nevertheless, the other side of having such diverse set of 

data-acquisition equipment and driven machinery is the 
lack of compatibility and standards in terms of data and 
command formats, hardware interfaces, algorithms and 
such. 

As different BMIs becomes more common in 
neuroscience labs and medical clinics, the concept of 
assistive and restorative designs appeared [9]. Different 
configurations of feedback and stimulation devices 
improves rehabilitation for patients with motor and 
cognitive disorders [10]. 

2. MATERIALS AND METHODS

2.1. EEG-based data acquisition systems. Main 
concepts. 

There are several approaches to brain activity 
measurements, such as magnetoencephalogram (MEG), 
near infrared spectroscopy (NIRS), electrocorticogram 
(ECoG), functional magnetic resonance imaging (fMRI), 
electroencephalogram (EEG), etc. An invasive technology 
uses an array of electrodes implanted on the surface of 
motor cortex. Invasive BCI systems are mostly used to 
restore special sensations, such as visual sense, and motor 
functions for paralyzed patients. The quality of neural 
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signals is remarkably higher because microelectrodes 
directly implants into the cerebral grey matter. However, 
invasive BCI systems have known disadvantage of causing 
immune reaction and callus, which, in most cases, leads to 
regression of neuronal signal quality. 

An EEG device, because of noninvasive technology, 
found a wide application in both clinical and research fields 
due to its low cost and portability. EEG systems records 
brain signals from the scalp [11]. This method has a long 
history since Berger’s works in 1935. Currently, EEG is 
one of the most widely used technique in noninvasive brain 
research to study correlates of perceptual, cognitive, and 
motor activity associated with processing of information. 
From the technical point of view EEG systems are quite 
simple and consists of several (up to 256 according to [12]) 
dry or gelled electrodes, fixed on the surface of scalp with a 
cap, semi-soft fixtures or other methods. Electrodes 
connects to the processing module with low-noise wires 
because of low amplitude of the signals. The processing 
module usually consists of different amplifiers, bandwidth 
filters and analog to digital converters (ADC). Digitized 
signal then usually used as a source for classification 
algorithms or just stores in some kind of memory device for 
further offline processing. 

Despite of its long history and technological 
maturity, EEG systems rarely used outside of scientific labs 
or medical clinics. The problem is the vulnerability of EEG 
signal to artifacts and distortions. Besides, such systems 
often needs calibration before use and assistance during set 
up. Questions of the influence of the setup, system used and 
repetitiveness on the result discussed in [13].  

To enhance the quality of the EEG signal acquired 
several methods can be used. First, it is often possible to 
use less number of channels. This approach can be 
advantageous because of the mostly linear correlation 
between overall signal quality and number of channels. For 
many real-world tasks like driving some external 
equipment, there is no need to use too many channels. 
According to [12]: “Results indicate that on average an 
EEG montage with as few as 35 channels may be sufficient 
to record the two most dominate electrocortical sources 
(temporal and spatial R2 > 0.9). Correlations for additional 
electrocortical sources decreased linearly such that the least 
dominant sources extracted from the 35 channel dataset had 
temporal and spatial correlations of approximately 0.7. This 
suggests that for certain applications the number of EEG 
sensors used for mobile brain imaging could be vastly 
reduced, but researchers and clinicians must consider the 
expected distribution of relevant electrocortical sources 
when determining the number of EEG sensors necessary 
for a particular application”. Besides, the influence of the 
experimental setup, calibration, subject and device 
configuration can also affect the digitized data according to 
[13]. Considering the fact that in many studies the results, 
obtained with limited number of EEG channels, were 
sufficient for the target task, it is often depends more on the 
researcher, then on equipment. Even for large 256-channel 
systems, only 125 were usable, because of the poor 
recordings due to large movement artifacts and/or 
degrading electrodescalp connections [12]. Besides, the 

preparation and electrode placement stage of the 
experiment can be time-consuming as, on average, two 
skilled research assistants took 35 min to affix an electrode 
cap, 64 electrodes, apply gel, and get electrode impedances 
within an acceptable range, according to [14]. No doubts, 
such configuration is not acceptable for mobile or e-Health 
BMI. 

A novel approach to wearable EEG system was 
offered in [15]. The conception of transparent EEG and 
concealed EEG sensor array placed around the ear with 
wireless data-transfer to smartphone showed its feasibility 
and needs for further development as it seems to be the 
future of BMI for mobile devices.  

Next approach for enhancing the total quality of the 
signal for classification is the reinforcement method, when 
EEG , considering as the base signal source, merges with 
the data from other types of sensors like EMG, EOG, 
functional near-infrared spectroscopy (fNIRS), 
magnetoencephalography (MEG) etc. It leads to the idea of 
hybrid BMI in different configurations, tunable for any 
requirements or set up. According to [16], that approach is 
feasible for restorative feedback systems too.  

Hybrid BCI can be used in vast number of 
configurations for various tasks. Novel approach of 
improving the accuracy of classification by hybridization 
becomes more and more popular. For example, study [17] 
proposes a method of forging Steady state visual evoked 
potentials (SSVEPs) method with the eye-tracking system 
to enhance the quality of classification for 30-target 
spelling application. The similar hybrid 
electroencephalography–functional near-infrared 
spectroscopy (EEG–fNIRS) scheme was used to resolve 
eight basic commands to control the quadcopter. The 
novelty of the proposed method is that brain state self-
regulation learning based on mental arithmetic and 
resolving the directions of eye movements and blinks 
through EEG data processing. As given EEG command had 
to match with an opposing fNIRS command for the driving 
command generation, the classification accuracy improved 
noticeably. Besides, registering eye movement with EEG 
device let to simplify the design, because separate hardware 
eye-tracker became unnecessary. The study confirms the 
statement of resolving the same events with different 
sensors, as the common technique to process the data of 
eye movement is EOG [18].  

Similar NIRS-EEG hybrid device can be improved 
to become portable as it was proposed in study [19]. In that 
configuration, 16 EEG electrodes and eight NIRS probes (5 
sources and 3 detectors) were sufficient for cognitive task 
research with mental arithmetic and rest state baseline 
experimental protocol. However, the subjects were sitting 
still in an armchair during the experiment, so, actually, 
mobility features of the device and accuracy during 
movements were not tested.  

Another growing trend in neuroscience is feedback-
featured approach, also known as “closed-loop technique”. 
This is more advanced scenario, when some kind of 
interaction between brain state and actions exists during the 
experiment or treatment. Feedback devices becomes 
popular for support and rehabilitation of motor impaired 
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patients, as it allows fine tuning of the feedback and 
command modes. The application includes FES feedback 
for gait [20], hand movement [21], and even swallow 
assistance [22], different brain stimulations - transcranial 
magnetic stimulation (TMS) or transcranial electric 
stimulation (TES) for and mental decays [23], visual 
feedback for cognitive training for older adults [24], 
electrical deep brain stimulation (DBS) for patients with 
advanced Parkinson’s disease [25]. 

Such diversity also lets to take into account another 
classification of feedback-BMIs as assistive and restorative. 
Assistive BMIs supports the motion intentions of the 
patient without direct behavioral gains. It does not depend 
of feedback or external stimulation, because even 
combination of BMI with physiotherapy does not result in 
effect of relevant functional improvement. Moreover, the 
underlying neurophysiology of BMI therapy has not yet 
fully explored to the moment [9]. Therefore, the concept of 
restorative BMI is abstract to the moment. 

According to [9], “BMIs may be referred to as 
restorative tools when demonstrating subsequently (i) 
operant learning and progressive evolution of specific brain 
states/dynamics, (ii) correlated modulations of functional 
networks related to the therapeutic goal, (iii) subsequent 
improvement in a specific task, and (iv) an explicit 
correlation between the modulated brain dynamics and the 
achieved behavioral gains”.  

To summarize the stated designs and requirements, 
we can clearly say about the demand for portable, modular, 
multi-channel autonomous device, capable to process and 
store raw data from variety of sensors, provide feedback 
and/or generate drive command for external robotic 
devices. 
 

2.2. Conceptual design of portable modular hybrid 
device 

A conceptual device with modular portable design, 
rich data acquisition and processing features, numerous 
interfaces was developed and tested in laboratory on 
Neurobiology and Medical Physics of Immanuel Kant 
Baltic Federal University.  

Fig. 1 shows block schematic of the proposed design 
(left side) and the photo of actual device during the 
experiment (right side). Main input interface acquires data 
from 16-channel EEG cap with gelled Ag/AgCl electrodes. 
Raw EEG data digitized by two ADS1299 analog-to-digital 
converters (ADC) in daisy-chain mode. Other interface is 
RS-485 wired interface that lets connection of various 
wired sensors, actuators and feedback equipment via 
UART protocol. The core consists of Cortex M4 
microprocessor with powerful processing capacity that 
manages both ADC microchips, RS-485 interface, power 
management module with 4500 mA/h battery and output 
interface to Intel Edison module. USB interface, SD card 
and interfaces of Intel Edison board are not shown. The 
presence of powerful computer module on board gives an 
opportunity to directly process biosignals and control 
external devices without additional wireless or wired 
transmission. Additionally, Intel Edison board is equipped 
with wireless modules, so it is possible to use Wi-Fi 
sensors or feedback devices too. Operation system of Intel 
Edison board permits execution of Python code, written for 
desktop systems, so it simplify software development and 
upgrade.  

 
 
 

 

 
Figure 1: Proposed design of a modular portable neurodevice for biosignal registration, processing and drive 

command generation. Block schematic diagram (left) and photo from actual experiment with 
photoplethysmography (PPG) sensor. 

Maksim Vladimirovich Patrushev  et al /J. Pharm. Sci. & Res. Vol. 9(11), 2017, 2182-2188

2184



For the test purposes, the device was connected to 
EEG, EMG, EOG, PPG, position-accelerometer and 
thermometer sensors, respectively. Results obtained proved 
its feasibility as laboratory or medical device in terms of 
accuracy, portability, data storage capability, low response 
time [26; 27].  
Proposed design is suitable for different experimental 
protocols and real life applications. External robotic 
exoskeletons, prosthesis/orthosis devices can connect 
through wireless or wired interfaces, because processing 
power of Intel Edison module allows onboard generation of 
drive commands. Feedback and restorative models, in 
many cases, consists of the feedback hardware and control 
algorithms. Such architecture can be easily implemented 
with EEG, RS-485 and Wi-Fi interfaces of the device with 
all software installed on Intel Edison board. This setup 
excludes the need of any PC or laptop and consists only of 
sensors, neurodevice and feedback system. Portability, 
wireless interface and embedded SD card slot makes the 
neurodevice preferable for telemetry transmission task. 
Hybrid design allows using different sensor configuration, 
necessary for e-Health programs with constant and long-
term monitoring. Wi-Fi protocol can be used to transmit 
data to smartphone with special application installed. It 
allows keeping constant connection with remote medical 
database server via Internet connection of the cellphone. 
Besides, this neurodevice in similar configuration can be 
used for fatigue and drowsiness detection systems for truck, 
train drivers and airplane pilots [28; 29; 30]. 

The novelty of the design is the integral structure of 
the “sensor-digitizer- processor software-drive command” 
chain, when every operation can be performed on single 
board. Many real-time BCI models are highly affected by 
delays between data acquisition and command generation. 
As many algorithms based on sliding window, even 0..2 sec 
time frame can be not sufficient to control fast mobile 
device, for example, quadcopter [18], and additional stages 
of coding/decoding, transmitting, etc., makes the situation 
even worse.  

This way, proposed “all-in-one board” concept can 
become the best solution, as it minimize the number of 
steps and execution time for the driver algorithm. Fig. 2 
shows block schematic diagram for open-loop hybrid 
device data flow, capable to store (and transmit) the 
obtained data on all stages, which makes it adaptive to 
variety of protocols. 

An ability to not just process, but also store and 
transmit data is valuable for telemetry, e-Health and post-
processing research systems. Stored pre-processed data can 
later be used to train classifiers and as the reference for 
neural networks. In combination with class and feature sets 
these data blocks forms a complete model for neural 
network. Open-loop systems covers mostly any 
configuration of driven robotic equipment or stimulation 
system, but cannot provide therapeutic or learning effect. 
From the other side, restorative interfaces attracts interest 
in both the scientific and medical communities. 

 

 
Figure 2: Open-loop algorithm data flow and processing 

stages. 
  
 

3. RESULTS AND DISCUSSION. 
Restorative BMIs, based on neurofeedback 

paradigm, requires closed-loop design of the device and 
strong supplemental theoretical foundation. Because of the 
relative novelty and immaturity of the restorative BMI 
paradigm there is no unified classification of experimental 
or clinical protocols and designs.  

Many existing neurofeedback protocols targets 
different neuronal phenomena observed in EEG 
measurement. Such protocols differ regarding the 
frequency band addressed (e.g., alpha-, beta, theta-, 
gamma-training), the utilization of different electrode 
locations (Fz, Cz, Fz1, etc.), and the recording of the EEG 
under different activity states of the subjects, e.g., eyes-
open or eyes closed. Based on findings about hippocampal 
theta-rhythm and its relation to memory, for example, a 
theta-upregulation neurofeedback at electrode Pz was 
performed which indeed led to improved memory 
consolidation (Reiner et al., 2014). Notably, different 
protocols can influence varying brain networks as long as 
they rely on biologically relevant frequencies (Hutcheon 
and Yarom, 2000). A protocol can be considered 
operational, if the EEG signal is modulated in accordance 
with instructions, even though such changes might not 
always be accompanied by cognitive or behavioral 
changes; the latter, however, usually is the aim of most 
neurofeedback studies, according to [31]. 

Fig. 3 shows an overview of main areas, given to 
neurofeedback applications. That figure is an excerpt from 
the article [31] and, in our opinion, clearly illustrates 
current view on neurofeedback applications. As it can be 
clearly seen, areas of applications can be divided into three 
threads, depending of the task of learning. Feedback 
systems as a therapeutic tool is two-stage algorithm. First, 
after the observation of patient’s brain activity and 
comparing it to the reference set of parameters of healthy 
subjects, the protocol of stimulation has to be defined. 
According to [25], certain combinations of oscillations, 
mostly in theta- and beta- band, can be utilized as 
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biomarkers. Such biomarkers can be resolved and classified 
with adaptive feedback algorithms. The purpose of the 
stimulation is the correction of brain state parameters and 
bring it closer to normal, affecting target motor or cognitive 
functions of the patient or subject. The term “feedback” can 
mean certain combinations of oscillations, registered via 
EEG, muscle activity, recorded with EMG, actual physical 
movement or any other feature. In any case, the feedback 
from the subject has to be relative to some criterion, and 
feature of brain activity has to meet some threshold or state. 
As every application means certain degree of voluntary 
control of the brain state, the subject  

became an important part of the scheme. Not all subjects 
can benefit from such reinforcement learning and according 
to [31] about one third of all participants not able to show 
any long-term gains or cannot achieve the desired state of 
brain. However, feedback paradigm is still one of the most 
promising and perspective, because of the rapid 
development of hardware and software components for 
neurodevices. Feedback devices heavily depends on robust 
algorithms and complex mathematical models [25] because 
of the requirement to adapt to individual type and level of 
feedback of subject or patient.  

  
Figure 3: An overview of main neurofeedback application areas according to [20] 

 
Figure 4: Main steps of closed-loop feedback algorithm 
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The similar approach leads to experimental and 

peak-performance protocol. Cognitive functions and its 
relation to brain activity still the subject of scientific 
interest, so feedback systems utilized in many ongoing 
researches.  

All feedback systems designed to work in cyclic 
fashion, providing stimulation and reading feedback 
parameters from the Learner. Fig. 4 shows block diagram 
for closed-loop feedback system.  

 As it can be seen, the whole sequence is made as 
constant adaptation loop. The structure of the feedback 
signal can be quite complex, and, for EEG recordings, can 
include EMG signals. Muscles on the head (occipitofrontal, 
auricular and temporal muscles) or even more distant, can 
interfere with EEG on higher frequencies with most of the 
power between 20 Hz and 150Hz. So, in fact, signal 
recorded by EEG electrodes is a mixture of different 
oscillations and can consist of inherit brain oscillations, 
voluntary modulation of brain state and involuntary head 
muscle contractions, connected with mental efforts to 
achieve brain self-regulation. Recent study [32] discovered 
extensive muscle employment, which increased during the 
training sessions. Automatic online muscle control was 
suggested not only as the requirement for quality EEG 
signal, but for genuine BMI-feedback training. 

Based on aforementioned protocols and descriptions 
it is possible to list set of common requirements for BMI 
and propose unified hardware platform. Proposed 
neurodevice has a number of features to suit current and 
perspective experimental protocols: 

-portability and compatibility with current and 
perspective sensors. Proposed neurodevice has 
independent power module, equipped with 4500 
mA/h battery, different wired (USB, RS-485, 
analog) and wireless (Wi-Fi) interfaces, capable to 
temporary store data on memory SD card.  

-hybrid feature. An option to use different sensors and 
sensor arrays and embedded pre-processing and 
processing modules permits different hybrid 
configuration. Ability to acquire data from 
different sensors (e.g. EEG, EMG, EOG, PPG and 
thermometer) was demonstrated during test phase. 

- Telemetry. Proposed device can store, process and 
transmit data from all sensors. 

-generating drive commands for external robotic 
equipment. Embedded powerful processing 
module Intel Edison can handle complex 
calculations and software and capable to execute 
Python code written for desktop computer, that 
simplify programming and software update. Wired 
and wireless interfaces can connect different types 
of actuators or electronic control boards. 

 
Closed-loop feedback applications has slightly 

different requirement set, mostly because of the demand to 
adapt for individual parameters of each subject and flexible 
experiment protocols. 

- Software and hardware update. The neurodevice 
has USB, Wi-Fi hardware interfaces and Linux 

operation system, that makes software update 
easy. Modularized architecture allows cascading 
of such devises (as wireless network nodes) for 
external or offline processing and scalability. 

- Two-stage processing (Cortex M4 and Intel 
Edison) allowed to separate software applications 
into pre-processing and processing stages. As all 
calculations and command generation performed 
“onboard”, neurodevice can execute real-time 
feedback applications with low latency.  

- Different stimulation methods and feedback. 
Proposed neurodevice is capable to connect all 
modern sensors from analog to wired RS-485 
UART and smart Wi-Fi models. The same is 
applicable for stimulation and feedback 
equipment. As most part of stimulation (FES, 
TES) devices controlled by computer, the 
neurodevice can connect as network node. 

- Logging. Feedback training can last for numerous 
prolonged sessions, so logging of parameters is 
valuable. The neurodevice has SD-card slot 
onboard, so logging is a matter of software 
installed. 

Proposed device is not a universal single choice for 
everything, of cause. A number of issues are a subject of 
future development and study. Among them: latency tests, 
position resolution for driven robotic arm, artificial neural 
net for control module, etc. Proposed device may become 
an illustration of classical hardware design merged with 
Internet of Things approach “all-in-one board”. This 
promising combination can become very popular within “e-
Health” and “remote medicine” concepts. Besides, as was 
shown, modern BMIs has many similar or identical 
modules, so unified approach seems logical. Moreover, 
recent studies, such as [33] proposes standard approach for 
neuroimaging data processing. Standard software libraries 
and utilities for pre and post processing of neuroimaging 
data receiving considerable attention by the community. A 
further contribution may be creating similar standards for 
EEG signal processing and drive command generation for 
BMI devices. 

Another perspective task is adding multi-mode 
capability to the device. According to e-Health conception, 
patients goes though different activities in daily life, 
interacting with different smart devices, and, at the same 
time, keeps connection to health center. From technical 
side, it can be described as a mixture of sensors and 
systems connections/disconnections events, running 
different software modules, storage and transmitting 
telemetry data.  

“In order for neurofeedback to be effective as a tool 
for cognitive enhancements or clinical applications, it needs 
to be shown that learned self-regulation transfers to 
situations where neurofeedback is not available anymore, 
and that learned self-regulation is maintained beyond the 
initial training period” [34]. Such approach dictates 
constant monitoring of physiological parameters of patient 
or subject and demand to tune the stimulation or feedback 
to achieve the best gain. 
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4. CONCLUSION

BMIs became a valuable standard tool for brain-
machine interaction for researchers, doctors and engineers. 
With time, purpose and limitations of BMIs became clearer 
and sets of requirements has been defined. A number of 
studies was analyzed and common features briefly 
explained. A compact hybrid neurodevice that meets most 
experimental set ups and protocols was proposed. Its main 
features are portability and processing capacity, different 
wired and wireless interfaces and onboard storage, 
mobility. The feasibility of the device was proved in test 
phase, but further development needed to evaluate its 
practical applications and limitations. A brief discussion 
revealed the demand for further concept development in 
terms of standards and hardware/software design to comply 
the e-Health paradigm. 
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