

Journal of Pharmaceutical Sciences and Research www.jpsr.pharmainfo.in

Use of Protective Preparations in Cows' Feeding to increase Ecological and Food Properties of Milk and Cheese

Amina S. Dzhaboeva,

Kabardino-Balkarian State Agrarian University by V.M. Kokov, 360030, Russian Federation, Nalchik, 1 "v"Lenin Street.

Oleg K. Gogaev,

Gorsky State Agrarian University, 362040, Russian Federation, Vladikavkaz, 37 Kirov Street.

Zarina T. Baeva,

North-Caucasian Mining and Metallurgical Institute (State Technological University), 362021, Russian Federation, Vladikavkaz, 44 Nikolaev Street.

Marina G. Kokaeva,

North-Caucasian Mining and Metallurgical Institute (State Technological University), 362021, Russian Federation, Vladikavkaz, 44 Nikolaev Street.

Radik H. Gadzaonov,

Gorsky State Agrarian University, 362040, Russian Federation, Vladikavkaz, 37 Kirov Street.

Inna K. Sattsaeva,

North-Ossetian State University by K.L. Khetagurov, 362025, Russian Federation, Vladikavkaz, 46 Vatutin Street.

Abstract.

Heavy metals, which significantly contaminate territory of the Republic of North Ossetia – Alania, inhibit the effect of many enzymes, their physiological function and metabolism. *The research aims to* study the effectiveness of using preparations enterosorbents Chelaton and Aerosil in lactating cows' diets to enhance ecological and nutritional properties of milk and cheese. *The research methods.* The object of the study was lactating cows. Animals in the control group were fed the basic diet (BD). Cows in the 1st test group were fed BD supplemented with the adsorbent Chelaton at a dose of 2% by weight of the diet dry matter; in the 2nd test group – adsorbent Aerosil at a dose of 40 mg/kg body weight. All experimental parameters were processed by mathematical analysis using software "Microsoft Excel". *The research results.* The analysis of the diets composition showed that the zinc content exceeded the maximum permissible concentration (MPC) by a factor of 2.5-3.6, lead – 3.0-4.5 and cadmium – 1.9-2.5. Aerosil additives contributed to the increase in cows' milk of the 2nd test group the fat content by 0.22%, protein – by 0.23%, dry matter – by 0.52%, as well as vitamin value of milk, because vitamin C content increased by 33.5% and vitamin A – 90%. The positive effect of this preparation was on the milk density as well. It should be noted that the fact of reducing in animals' milk of the 2nd test group compared to the control zinc concentration by 58.1%; cadmium – by 5.06%, and lead – by 54.2%. Suitability of milk of all cow groups for cheese making conformed to the 2nd test group – 22.5 min. Samples of cheese from the cows' milk of the 2nd test group – 22.5 min. Samples of cheese from the cows' milk of the 2nd test group relative to the control were valued 4.7 points higher.

Keywords:

lactating cows, heavy metals, enterosorbents, milk, physico-chemical milk composition, processing characteristics, organoleptic evaluation of cheese.

Relevance of the problem. The world around us contains a large number of different chemical elements. Certainly the most dangerous of them are heavy metals. They directly affect the human and animal bodies changing their functions and properties. Heavy metals are a group of chemical elements with metal properties and significant atomic weight or density [1, 2].

Heavy metals include mercury, lead, cadmium, cobalt, copper, zinc, iron. is The quantitative content of trace elements in the diet is not indifferent to the human

and animal bodies, since, depending on the concentration the substance may be extremely toxic [3, 4].

The biological and medical significance of heavy metals is determined by their high toxicity and accumulating in the body have negative polytropic effect. This accumulation occurs also at toxic metal levels in natural environments far below the maximum permissible concentration (MPC). They, being metal components, form part of and inhibit the action of many enzymes, hormones and vitamins, thereby, suppressing their physiological function and the metabolism intensity. By food chains they get into the animal body and having accumulated negatively affect the products quality [5, 6].

Enterosorbents, that is, feed preparations, which, due to binding (adsorption) in the gastrointestinal tract, remove these elements from the body are used to detoxify heavy metals in farm animals' nutrition. A good enterosorbent should be safe, not be absorbed from the intestine, have high absorbing capacity and have a selective effect, for example, to bind only metals, without removing vitamins and other beneficial substances [7, 8].

The research aims to study the effectiveness of using preparations enterosorbents Chelaton and Aerosil in lactating cows' diets to enhance ecological and nutritional properties of milk and its derivatives (cheese).

The research methods. To achieve this goal scientific and economic experiment on black-pied lactating cows was conducted in the conditions of the collective farm "40 Let Oktyabrya" in Mozdoksky District of the Republic of North Ossetia-Alania. For this purpose, 30 cows after the second lactation were selected and divided by the analogue scale into three groups of 10 animals each.

According to the scheme of studies (Table 1), the animals of the control group received the basic diet (BD). Cows of the 1^{st} test group were fed supplemented with adsorbent Chelaton at a dose of 2% by weight of the diet dry matter; in the 2^{nd} test group – adsorbent Aerosil at a dose of 40 mg/kg body weight.

To determine the milk productivity of the experimental animals, individual control milk yields were carried out once a month. At the same time physico-chemical and technological properties, organoleptic qualities of milk and its derivatives were studied by conventional methods.

The heavy metal content in samples of feeds and milk was determined by atomic absorption spectrophotometer AAS-3.

All provided during the research indices were processed by mathematical analysis using software "Microsoft Excel".

The research results. Analysis of feed samples having selected in the territory of the collective farm "40 Let Oktyabrya" in Mozdoksky District of RNO-Alania showed that the zinc content exceeded the maximum permissible concentration (MPC) by a factor of 2.5-3.6, lead - 3.0-4,5 and cadmium - 1.9-2.5.

In that regard the priority for reducing the heavy metal concentration in animal products is the use of feeds that have sorption, ion-exchange and biologically active properties.

For this purpose, enterosorbents Aerosil and Chelaton were widely used in animal husbandry. Aerosil is a silicic acid that has the highest adsorption of all sorbents used in animal husbandry. Chelaton is a complexing compound capable to form stable low dissociative complexes with many divalent and trivalent metals.

During 3 months research the effect of the used preparations on milk productivity of the experimental cows was studied (Table 2).

According to milk yield of natural fat content significant (P <0.95) differences between the cows of the control group (1089.3 kg) and the animals of the 1st test (1099.5 kg) and 2nd test (1122.6 kg) groups were not established. Hence, detoxification of heavy metals does not affect the milk yield of natural fat content.

Application of absorbent Aerosil as a detoxicant activated the processes of rumen metabolism, which, first of all, contributed to the intensification of fat and protein synthesis in the cows' mammary gland. Due to this, the highest yield of milk fat and protein had animals of the 2^{nd} test group, having significantly (P> 0.95) exceeded in these indices the control by 3.6 kg or 9.5% and 3.7 kg or 10.6%.

	11 - 10
Group	Feeding Features
Control	Basic diet (BD)
1 test	BD + adsorbent chelaton at a dose of 2% by weight of the diet dry matter
2 test	BD + adsorbent Aerosil at a dose of 40 mg/kg body weight

Table 1 - Scheme of scientific and economic experiment

			11 10			
Index		Group				
Index	Control	1 test	2 test			
Yield of natural fat content	1089,3±24,4	1099,5±24,8	1122,6 ±21,9			
Milk content, %:						
fat	3,46 ±0,03	$3,63 \pm 0,04*$	3,68 ±0,07*			
protein	3,20 ±0,03	3,38 ±0,03*	$3,43 \pm 0,04*$			
Absolute yield:						
milk fat	37,7±0,36	39,9±0,34*	41,3±0,36*			
Milk protein	34,8± 0,29	37,2±0,33*	38,5±0,34*			
Yield of basic fat content	1046,3±24,1	1108,7 ±21,0*	$1147,5 \pm 26,0*$			
In % for control	100,0	106,0	109,7			

* P> 0.95

n - 10

n = 10

Index		Group	
Index	Control	I test	II test
Dry matter, %	12,27±1,10	12,54±0,05*	12,79±0,11*
Fat, %	3,46±0,05	3,63±0,04*	3,68±0,07*
Protein, %	3,20±0,02	3,38±0,03*	3,43±0,04*
Lactose, %	4,51±0,06	4,38±0,08	4,57±0,06
Vitamin C, mg/l	14,9±0,68	$15,90,55\pm$	19,9±0,21*
Vitamin A, mg/l	0,20±0,02	0,31±0,03*	0,38±0,03*
Density, °A	28,15±0,12	28,57±0,13*	28,79±0,14*
Acidity, °T	18,11±0,34	17,85±0,31	17,89±0,29
Zinc, mg/l	3,46±0,19	3,49±0,19*	1,45±0,11*
Ash, %	1,16±0,02	1,15±0,04	1,11 ±0,03
Cadmium, µg/l	18,2±0,15	15,6±0,24*	9,0±0,16*
Lead, mg/l	0,24±0,007	0,16±0,006*	0,11±0,004*

Table 3 – Physico-chemical composition of cows' milk

* P > 0.95, n = 10

Table 4 – Suitability of experimental cows' milk by the time of rennet curdling

Cows' group	% of milk protein	Milk pH	Temperature , °C	Length of curdling, min.	Milk type
Control	3,46	6,45	35	27,6	2
1 test	3,63	6,35	35	25,0	2
2 test	3,68	6,20	35	22,5	2

* Note: according to milk suitability for cheese-making, milk is divided into three types: 1 - milk, curdled under the rennet effect for nearly 15 minutes; 2 - from 16 to 40 minutes and 3 - curdling for more than 40 minutes.

Table 5 -	Tasting	evaluation	of Ossetian	(fresh)	pickled cheese
				· /	

Organalantia abarrataristica	Points	Cheese samples from cows' milk			
Organoleptic characteristics		Control group	1 test group	2 test group	
Taste and smell	45	39,3	40,8	42,2	
Consistency	25	21,2	21,2	22,0	
Pattern	10	8,3	8,9	9,3	
Total	100	88,8	91,5	93,5	
Grade		top	top	top	

Based on milk yield of natural fatness and fat content in milk, the milk yield of 3.6% (basic) fat content was calculated. By milk yield of the basic fat content the dairy industry enterprises are paid off the manufactures of the region. Aerosil supplements during the experiment provided for cows of the 2^{nd} experimental group (1147.5 kg) the highest yield of the basic fat content having significantly (P <0.95) exceeded their control counterparts in this index by 1012 kg or 9.7%.

The results presented in Table 3 show that the use of preparations Chelaton and Aerosil in cows' diets of the 1^{st} and 2^{nd} test groups of the experiment contributed to increasing the physico-chemical properties of milk.

Enterosorbent Aerosil supplements contributed to a significant increase (P> 0.95) in the cows' milk of the 2nd test group versus the control the content of fat by 0.22%, protein by 0.23%, dry matter by 0.52% and milk vitamin value since the content of vitamin C increased by 33.5% and vitamin A - by 90%. The positive effect of this preparation was also on the density of milk. The cows of the 2nd test group exceeded the control counterparts in this index by 0.64 °A, resulting from the increase of milk dry matter.

On the positive side, it should be noted the fact of decreasing zinc concentration by 58.1% (P <0.05);

cadmium - by 5.06% (P <0.05) and lead - 54.2% (P <0.05) in milk of animals from the 2^{nd} test group compared to the control. This indicates that Aerosil has high adsorption properties.

To study technological properties of milk is important for its qualitative characteristics in test groups consuming diets with the excessive amount of heavy metals. Therefore, at the end of the lactation, samples of Ossetian (fresh) pickled cheese were produced from cows' milk of all groups at the Mozdok Dairy Plant (RNO-Alania).

The suitability of all experimental cows' milk for cheese-making was estimated by the time of its rennet (chymosin) curdling while recording the acidity and milk temperature (Table 4).

According to milk suitability of all cow groups for cheese-making conformed to the 2^{nd} type. But by the length of milk curdling there was a difference between the groups. Milk of animals in the control group was curded for 27.6 min, in the 1^{st} test group – for 27.5 min and the least time of curdling was in the 2^{nd} test group – 22.5 min. Rennet clot in all groups was dense and elastic with normal syneresis (wheying). Samples of cheese after 10-day aging in the pickle had a good marketable state.

The organoleptic properties of the Ossetian cheese samples were rated on a 100-point scale by the tasting commission. The tasting results with the conditional 5, 10 rating of the test, appearance, packaging and marking, respectively are given in Table 5.

According to taste and smell (over 37 points) and the total number of points (over 88 points) cheese samples from milk of all groups were rated as a top grade. The least score the tasting commission gave to the cheese sample from the cows' milk of the control group - 88.8. Cheese samples from the cows' milk of 1st and 2nd test groups in relation to the control were rated, respectively, 2.7 and 4.7 points more.

DISCUSSION OF RESEARCH RESULTS.

Analysis of feed samples having selected in the territory of the collective farm "40 Let Oktyabrya" in Mozdoksky District of RNO-Alania showed that the zinc content exceeded the maximum permissible concentration (MPC) by a factor of 2.5-3.6, lead - 3.0-4,5 and cadmium - 1.9-2.5. Application of absorbent Aerosil as a detoxicant activated the processes of rumen metabolism, which, first of all, contributed to the intensification of fat and protein synthesis in the cows' mammary gland.

Enterosorbent Aerosil supplements contributed to a significant increase (P> 0.95) in the cows' milk of the 2^{nd} test group versus the control the content of fat by 0.22%, protein by 0.23%, dry matter by 0.52% and milk vitamin value since the content of vitamin C increased by 33.5% and vitamin A - by 90%.

According to milk suitability of all cow groups for cheese-making conformed to the 2^{nd} type. But by the length of milk curdling there was a difference between the groups. Milk of animals in the control group was curded for 27.6 min, in the 1^{st} test group – for 27.5 min and the least time of curdling was in the 2^{nd} test group – 22.5 min. Cheese samples from the cows' milk of 1^{st} and 2^{nd} test groups in relation to the control were rated, respectively, 2.7 and 4.7 points more.

CONCLUSION.

To increase the physico-chemical and technological properties of cows' milk produced in conditions of high heavy metal content in feeds, adsorbent Aerosol at a dose of 40 mg/kg body weight should be added to their diets.

REFERENCES

- Tedtova V.V. Ways to reduce feed toxicity. / V.V. Tedtova, M.A. Gubieva, E.S. Khamitsaeva // Materials of the V international conference "Stable Development of Mountain Territories: Problems and Prospects for Integrating Science and Education". -Vladikavkaz. - 2004. - pp. 507-508.
- Yarmots, A.V. A way to improve the ecological and nutritional qualities of milk and dairy products / A.V. Yarmots, R.B. Temiraev, L.A. Vityuk, M.G. Kokaeva, Z.K. Plieva // New technologies. -Maykop. - 2013. - №3. - pp.128-134.
- Temiraev, R.B. A way to improve the consumer qualities of Ossetian cheese / R.B. Temiraev, L.A. Vityuk, M.G. Kokaeva, N.S. Djibilova, A.M. Kanukov // Proceedings of Gorsky State Agrarian University. -Vladikavkaz. - 2012. - Vol. 49. - № 3. - pp. 169-173.
- Temiraev, R.B. Effect of chelate compounds on morphological and biochemical parameters of cows' blood. / R.B. Temiraev, Z.T. Baeva, A.V. Muzaeva, I.A. Arishina // Proceedings of Kuban State University. - Krasnodar. 2009. - № 6. (21). - pp. 140-144.
- Ibragimova, Z.R. Biological resources of young pigs in conditions of technogenic tension / Z.R. Ibragimova, V.V. Tedtova, R.B. Temiraev, L.V. Tsalieva, O.T. Ibragimova. // Materials of the IV International Scientific Conference "Topical problems of biology in animal husbandry". - Borovsk. - 2006. - pp. 267-270.
- Temiriev, V.Kh. Antioxidants in cows' diets / V.Kh. Temiraev, Z.T. Baeva, N.G. Ter-Teriyan, S.R. Techiev // Mixed feed. - 2009. - №5. - p. 71.
- Kairov, V.R. Influence of adsorbents on the processes of digestive and intermediary metabolism of fattened bulls during heavy metals detoxification / V.R. Kairov, L.G. Chokhataridi, S.B. Bokieva, E.S. Dzodzieva, D.G. Shiolashvili // Proceedings of Gorsky State Agrarian University. - Vladikavkaz. - 2015. - Vol. 52. - Part 1. - pp. 61-65.
- Vityuk, L.A. Technological method increasing consumer qualities of milk and dairy products / L.A. Vityuk, M.G. Kokaeva, Z.T. Baeva, V.V. Tedtova // Stable Development of Mountain Territories. - 2012.
 - №4. - pp. 81-84.