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Abstract 

The novel Coronavirus, also known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a contagion for 

the coronavirus disease commonly known as COVID-19. Globally, the COVID-19 pandemic is a public health crisis 

responsible for 18.2 million cases with 692,000 fatalities worldwide as of 04th August 2020. The aim of this study was to 

computationally design a multi-epitope vaccine (MEV) using emerging immunoinformatics approach to effectively prevent 

SARS-CoV-2 infection. Promising Cytotoxic T Lymphocyte (CTL), Helper T Lymphocyte (HTL) and Linear B-Cell specific 

epitopes were screened from highly antigenic viral proteins to generate a chimeric vaccine construct. The CTL epitopes were 

found to form a stable complex with HLA molecules. The multi-epitope vaccine candidate was designed by combining 

identified epitopes of diverse specificity using linker peptides. A model of the vaccine also included Toll like receptor (TLR-

2) agonist as an adjuvant. The vaccine structure was refined and analyzed for its suitability of use. The utility of the vaccine 

was assessed by conducting molecular docking with TLR-2 followed by Molecular Dynamics simulation for determining the 

complex stability. To measure the potency, a simulation of immune system upon vaccine candidate administration was 

executed. The multi-epitope vaccine was predicted to stimulate both humoral and cell-mediated immune response after multi-

stage in-silico study. The viral protein based vaccine sequence optimized and cloned in a bacterial expression system using 

pET-28a(+) vector. A Poly-His (6xHis) tag was added to facilitate protein purification. 
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1. INTRODUCTION 

Coronaviruses (CoV) are a group of zoonotic viruses 

responsible for symptoms ranging from a mild cold to 

severe respiratory diseases such as Middle East Respiratory 

Syndrome (MERS-CoV) and Severe Acute Respiratory 

Syndrome (SARS-CoV)[1]. Six virulent strains of 

Coronavirus (CoV) have been identified in the last decade 

[1]. However, a novel strain namely Severe Acute 

Respiratory Syndrome Coronavirus 2(SARS-CoV-2) was 

found to be associated with the recent global pandemic [2, 3]. 

The severe respiratory illness caused by the SARS-CoV-2 

strain is commonly described as Coronavirus Disease 2019 

(COVID-19). COVID-19 outbreak was confirmed by the 

World Health Organization’s (WHO) committee as a global 

health emergency on 30 January 2020[4, 5] and on 11 March 

2020, it was declared a global pandemic[6]. 

SARS-CoV-2 is an un-segmented, enveloped, and positive-

sense RNA virus that is widely distributed in mammalian 

species and belongs to the Coronaviridae family[7, 8]. 

SARS-CoV-2 is a novel β-coronavirus which is 

approximately 65-125nm in diameter, containing single 

RNA strands, nucleocapsids and crown-like spikes on the 

surface. The spike protein facilitates infection of the host 

epithelial cell leading to pulmonary failure and potentially 

fatal inflammation of the lower respiratory tract[9]. It bears 

a genome size ranging from 29.8kb to 29.9kb[10] that 

comprises of four main structural proteins: spike (S) 

glycoprotein, small envelope (E) glycoprotein, membrane 

(M) glycoprotein, nucleocapsid (N) and associated 

accessory proteins[11]. The spike protein is a transmembrane 

glycoprotein that forms homotrimers on the viral surface 

and enables host-viral interaction by attaching to 

angiotensin-converting enzyme 2 (ACE2) receptor 

expressed in lower respiratory tract cells [12, 13]. The 

Nucleocapsid called N protein is the structural portion of 

CoV and assists in viral budding at the Golgi-Endoplasmic 

reticulum region[9]. It is highly phosphorylated and plays an 

important role in packaging the viral RNA[12]. The 

Membrane or M protein is another structural component 

that forms envelope shape. Envelope (E) protein is involved 

in the development and maturation of the virus[14].  

As of 4thAugust 2020, a total of 18.2 million cases were 

confirmed with 692,000 fatalities. Currently, there are no 

commercially available vaccines approved while licensed 

therapies such as remdesivir and favipiravir do not 

guarantee complete recovery in severe cases caused by an 

increased viral-load. Some traditional Chinese medicines 

such as  Lianhuaqingwen and ShuFengJieDu based therapy 

may serve as potential alternative COVID-19 treatments, 

but  no clinical reports confirm the effectiveness and safety 

of these medicines for Covid-19[15].     

Vaccination has proven to induce quick immune response 

for the prevention of numerous deadly infectious 

diseases[16-18]. In traditional vaccine development approach, 

a whole pathogen is attenuated to serve as a vaccine 

candidate. The key limitation is the risk associated with 

toxicity and allergenicity of the whole pathogenic accessory 

proteins used. In-complete attenuation can lead to 

additional safety concerns. Moreover, in-vitro and in-vivo 

cell-based toxicity assays are required to meet additional 

regulatory requirements which can be time-consuming and 

expensive[19, 20].The In-silico peptide-based vaccine design 

offers a promising solution to mitigate risk and develop a 

potent vaccine capable of stimulating the immune system. 
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The selectivity of peptide-based vaccines allows precise 

activation of the immune response against specific antigens 

that do not require whole agent thereby rendering them 

safe[21, 22]. The peptide-based vaccine is constructed by 

incorporating T-cell and B-cell epitopes which an Antigen 

Presenting Cell (APC) recognizes through MHC-I and 

MHC-II molecules and then elicits cytokine and Interferon-

gamma (IFN-) production for inducing specific cellular 

and humoral immune response. Antigenic T-cell epitopes 

can be linked to antigenic epitopes of diverse specificities 

to create an immunogenic vaccine protein [23, 24]. The aim of 

this research is to design a multi-epitope chimeric vaccine 

candidate (MEV) by applying various computational tools 

of the emerging immunoinformatics approach. It is 

achieved by predicting T-cell, B-cell and cytokine targeted 

epitopes from antigenic SARS-CoV-2 proteins then 

validating the effectiveness of epitopes to be used as a 

potential constituent of the chimeric vaccine candidate. The 

potency of the vaccine is confirmed by a series of 

simulations including docking, molecular dynamics and 

immune-simulation.  

 

2. METHODS AND MATERIAL: 

2.1 Retrieval of protein sequence and antigenicity 

prediction : The protein sequences of SARS-CoV-2 (9 

sequences) were retrieved from National Center for 

Biotechnology Information (NCBI) in FASTA format and 

the antigenicity of all protein sequences was assessed using 

the VaxiJen 2.0 server where the threshold value was set to 

0.4[25]. It predicts antigenicity based on the transformation 

method of auto cross-covariance (ACC) to maintain 

predictive accuracy of 70-89% [25]. For further analysis, the 

proteins with the highest antigenic scores were chosen. 

2.2 Prediction of Epitopes of Cytotoxic T-lymphocyte 

(CTL) and Binding Alleles of MHC-I:  
The CTL epitopes of nine aminoacid length for 12 

supertypes (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, 

B58, and B62) were identified from the selected protein 

sequences through the NetCTL 1.2 server. It uses three 

criteria, namely C-terminal cleavage, MHC-I binding 

peptides and Tap transport efficiency where MHC-I binding 

and C-terminal cleavage are obtained by using Artificial 

Neural Network (ANN)[26]. The threshold was set in this 

analysis at 0.5. Similarly, the consensus method of the 

IEDB analysis tool was used to predict the MHC-I binding 

alleles of the CTL epitope. Percentile rank was adjusted to 

≤5 for counting binding alleles because lower score 

indicates higher affinity and source species was selected as 

Human[27]. 

2.3 Prediction of Antigenicity, Allergenicity and 

Toxicity of CTL Epitopes:  

The antigenicity of selected CTL epitopes was analysed to 

unsure their capacity to induce immune response with the 

help of VexiJen 2.0 server where threshold value was 

calibrated to 0.4[25]. Immunogenicity prediction is important 

for the vaccine, thus it was tested with the MHC-I 

immunogenicity tool of the IEDB server[28]. Both Allpred 

(https://www-bionet.sscc.ru/psd/cgi-

bin/programs/Allpred/allpred.cgi) and AllerTOP 2.0 server 

were used to predict allergenicity[29]. Toxicity of the CTL 

epitopes were predicted with the ToxinPred server to isolate 

non-toxic CTL epitopes[30]. 

2.4 Prediction of Helper T-lymphocyte (HTL) Epitopes 

and MHC-II Alleles:  

Helper T-lymphocyte (HTL) responses play multiples 

functions that is essential to developing the immune 

capacity to fight pathogens. Therefore, the HTL epitopes 

(15-mer) were identified using the IEDB MHC-II binding 

tool by applying the NN-align method[31]. A different 

percentile rank was generated for each epitope by 

comparing randomly selected 15-mer peptide’s scores from 

the SWISSPROT database. The percentile rank indicates 

the binding affinity, but the smaller the percentile rank, the 

better the binding affinity. So in this analysis, the percentile 

rank ≤5 was considered[32]. 

2.5 Identification of Cytokine-Inducing HTL Epitopes:                                                             

The helper T-cell secretes a variety of cytokines such as 

Interferon-gamma (IFN-γ), Interleukin-4 (IL-4), 

interleukin-10 (IL-10) which activate the B-lymphocytes, 

cytotoxic T-cells and other immune cells that are 

responsible for the immune response[33].  HTL targeting 

epitopes were identified by using INFepitope server[34]. 

Furthermore, IL4pred and IL10pred server was used to 

predict IL-4 and IL-10 stimulating properties of HTL 

epitopes[34, 35]. 

2.6 Identification of Linear B-lymphocyte (LBL) 

Epitopes:  

B-cell epitopes are antigenic which recognize and adhere to 

the B-lymphocytes leading to the secretion of  

antibodies[36]. ABCpred server was used to identify the B-

cell targeting epitopes which were developed based on the 

recurrent neural networks[37]. The isolated LBL epitopes 

were then analyzed with VaxiJen 2.0, AllerTOP 2.0 and 

ToxinPred servers to predict their antigenicity, 

allergenicity, and toxicity. 

2.7 Discontinuous B-cell Epitope Prediction:  
Most B-cell epitopes are sequentially discontinuous, 

indicating that they are composed of amino acid residues 

that may be far apart in sequence and interact directly with 

the receptor of the immune system[38]. We used the ElliPro 

tool of the IEDB server for discontinuous B-cell epitope 

prediction.  

2.8 Population Coverage Analysis: 

In diverse ethnicities different Human Leukocyte Antigen 

(HLA) alleles, as well as their expression, are sensationally 

distributed at different frequencies[39]. Hence, HLA-alleles 

distribution pattern varies among various ethnic groups and 

geographic areas around the world. IEDB population 

coverage tool was used to calculate population coverage. 

2.9 Conservancy Analysis:  

Conservancy analysis was analyzed using the IEDB’s 

epitope conservancy analysis tool. This tool calculates the 

degree of an epitope’s conservation within a given protein 

sequence set at a given identity level[40]. 

2.10 Molecular Docking Analysis between CTL 

Epitopes and HLA-Alleles:                                                     
Molecular docking is an important step to predict the 

interaction between two molecules. The MDockPeP 

server[41] was used for predicting interactions between 

selected CTL epitopes and human HLA-A*11:01 (PDB ID: 
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4UQ2). The binding affinity (kcal/mol) and Dissociation 

constant (KD) for the epitope-HLA-A*11:01 complex was 

predicted employing the PRODIGY server [80].  

2.11 Construction of Multi-epitope vaccine construct:  

Multi-epitope vaccine was constructed by connecting all 

isolated epitopes with appropriate linkers. For this purpose, 

chosen CTL, HTL, and LBL epitopes were combined 

together with AAY, GPGPG and KK linkers 

respectively[42]. Linkers (AAY, GPGPG, KK) play a very 

important role for protein folding, flaxibility and protein 

domain separation which makes the protein more stable [43] 

. Using adjuvants potentially increases immunogenicity[19] 

hence five different vaccine candidates were designed, 

using five different adjuvants including human beta-

defensin, human beta-defensin 2, L7/L12 ribosomal 

protein, HABA protein (M. tuberculosis, accession number: 

AGV15514.1), OmpA protein (GenBank: AFS89615.1). 

These 5 adjuvants have been used to construct the vaccine 

in different previous articles[44, 45] . Therefore, different 

vaccine sequences were constructed using these 5 adjuvants 

to select the highest antigenic vaccine sequence  .A Linker 

peptide is necessary to join two epitopes for the proper 

functioning of each epitope[43]Adjuvants were linked with 

the first CTL epitopes with the help of EAAAK linker[46].  

2.12 Antigenic Properties prediction of Constructed 

Vaccine Sequence: The five constructed vaccine 

sequences assessed for their antigenicity through the 

VaxiJen 2.0 server for immune response. For further 

analysis, the most antigenic sequence among the five 

probable vaccine candidates were isolated.  

2.13 Physicochemical and Allergenicity Evaluation of 

Selected Vaccine Sequence: AllerTOP 2.0 server was used 

to predict allergenicity. Physicochemical properties of the 

constructed vaccine sequence were predicted using the 

ProtParam web-server to determine stability, half-life and 

other parameters [47]. Additionally, solubility of the vaccine 

construct was predicted by the SOLpro tool in the 

SCRATCH suite[48]. 

 

 
Figure 1: Schematics of the methodology implemented in chimeric vaccine development. 

Retrieval and isolation of highly antigenic surface protein sequences

Epitope based vaccine design from selected antigenic proteins

Isolation of T-Cytotoxic cell specific epitopes Isolation of T-Helper cell specific epitopes
Isolation of linear B-cell specific

epitopes
Isolation of cytokine (IFN- ,IL-10,IL-4)

stimulating epitopes

Prediction of Antigenicity, Allergenicity and
Toxicity

Population coverage and Conservancy analysis

Construction of multi-epitope vaccine construct

Prediction of allergenicity and physiochemical properties of the vaccine
candidate

Vaccine structure modelling, refinement and validation

Prediction of antigenic properties

Molecular docking of the vaccine candidate with Toll like receptor (TLR-2)

Molecular dynamics simulation of the vaccine-TLR-2 complex

Immune system simulation of the upon vaccine administration

Disulphide engineering of the final vaccine construct

Validation of CTL epitope-HLA-A*11:01
interaction through molecular docking

Identification of discontinuous B-cell
specific epitopes

Active site prediction of the vaccine targetted receptor

Codon adaptation and in-silico clonning
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2.14 Vaccine Structure Modeling, Refinement, and 

Validation:   

The secondary structure of the vaccine sequence was 

generated through PSIPRED 4.0 server[49]. vaccine 

sequence was then converted into 3D structure using 

homology modelling based Phyre2 web server [50]. 

Although computational homology modeling methods 

perform very well to generate an accurate model but most 

models do not reach experimental accuracy and therefore 

are not always useful for the application. Hence protein 

structure refinement is required to bring the model closer to 

the native state. GalaxyRefine web server was used to 

perform structure refinement[51]. Subsequently, structural 

validation and model quality assessment was performed 

using Pros-SA server [49]. It analyzes the protein structure 

and compares with the  X-Ray and NMR based 

experimental structures[52]. To analyze specific non-bonded 

atomic interactions ERRAT server was used[53]. Finally, the 

Ramachandran plot was generated using the PROCHECK 

server. It calculates possible phi and psi angles that account 

for the amino acid residues[54]. 

2.15 Active Site Prediction of Receptor:  

Toll-like Receptor-2 (TLR2) plays a critical role 

recognizing viral proteins on innate immunity-based cells 

such as macrophages (MA), dendritic cells (DC), B-cell, T-

cell particularly T-regulatory cells [81]. SCFBio server 

(http://www.scfbio-iitd.res.in/dock/ActiveSite.jsp) was 

used for prediction of the ligand binding site on TLR-2. 

2.16 Protein-protein Docking between Vaccine and 

TLR-2:  

Molecular docking is a study of how two molecular 

structures are perfectly fit to match together and also 

evaluate binding affinity[55, 56]. TLR-2 agonist namely 

OmpA protein was used as an adjuvant [57]. It’s binding to 

TLR-2 (PDB ID: 3A7B) was validated employing the 

vaccine construct as a ligand for docking analysis. 

Molecular docking was executed in the HDOCK server [58]. 

Binding affinity (Kcal/mol) and KD were predicted with the 

help of PRODIGY server [80]. Subsequently, the binding 

energy of the complex was calculated by molecular 

mechanics generalized Born surface area (MM/GBSA) 

method using Hawkdock server [82]. The protein-protein 

interaction hotspots were identified using Spot-on server 
[85]. Further, hot-regions of interaction were isolated with 

the help of Hot-region server [86]. Contact map representing 

inter-residue interaction was derived from COCOMAPS 

server [87].    

2.17 Molecular Dynamics simulation:  

Stability of protein-protein can be determined by comparing 

essential dynamics with their normal modes[59, 60]. iMODS 

server was used to interpret the collective motion through 

normal mode analysis (NMA)[19]. The server calculated the 

position and magnitude of the complex’s immanent motions 

in terms of deformability, B-factors, eigenvalues, and 

covariance.  Similarly, atomic mobility and inter-residue 

network was predicted by Dynomics server [83].  

2.18 In-silico evaluation of Immune Response: To assess 

the immunogenic potential of the final vaccine construct, 

in-silico immune response after vaccine administration was 

measured using C-Immsim server [60]. The server uses a 

position-specific scoring matrix (PSSM) and machine 

learning techniques respectively for predicting epitopes and 

their immune interactions[61]. All parameters were set at 

default with the time steps being set at 1, 84, and 168 

wherein each time step represented 8 hours. Booster doses 

were administered on day 30 and day 60 respectively. The 

levels of antibodies, cytokines, B-cell, T-cell, DCs and 

macrophages were measured.  

2.19 Disulfide Engineering of Final Vaccine Construct:  
Disulfide bonds are covalent bonds that play a major role in 

the stabilization of protein structure. Disulfide engineering 

of the vaccine construct was executed with the help of the 

Disulfide by Design 2.12 web tool[62]. 

2.20 Codon Adaptation and In-silico Cloning:  

Codon adaptation is important to accelerate the rate of 

expression of codon use in the prokaryotic organisms. 

Codon adaptation was undertaken using Java Codon 

Adaptation Tool (Jcat) server wherein Escherichia coli 

strain K12 was selected as a host[63].  Codon adaptation 

index (CAI) and GC content of the adapted sequence were 

obtained  [64]. Furthermore, E. coli pET28a(+) was used as a 

vector for in-silico cloning utilizing the SnapGene 4.2 

software. 

 

3. RESULT: 

3.1 Retrieval of Protein Sequence and Antigenicity 

Prediction:  

Nine potential protein sequences of SARS-CoV-2 were 

retrieved from NCBI. Among the nine protein sequences, 

the envelope (E) protein and membrane (M) protein showed 

the highest antigenicity [Table 1]. These protein sequences 

are chosen for deriving antigenic epitopes. 

 

Table 1: Retrieved protein sequences and their antigenicity 
Name protein Accession number Antigenicity 

membrane glycoprotein QIV15191.1 0.5102 

spike glycoprotein QIC53213.1 0.4646 

leader protein YP_009742608.1 0.4064 

envelope protein YP_009724392.1 0.6025 

ORF3a protein QIC53205.1 0.5094 

nucleocapsid protein QIC53221.1 0.5025 

ORF1a polyprotein QIS60287.1 0.4786 

nsp2 YP_009742609.1 0.4021 

nsp4 YP_009742611.1 0.4699 
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3.2 Cytotoxic T-lymphocyte (CTL) Epitopes and MHC-

I Binding Alleles Prediction:  
The 126 CTL epitopes from M protein and 51 CTL epitopes 

from E protein were obtained from NetCTL II server. 

Subsequently, 80 unique epitopes (M protein) and 27 

unique epitopes (E protein) were isolated. Those unique 

epitopes were further analyzed with different parameters 

like antigenicity, allergenicity, toxicity and 

immunogenicity.  Further, 20 epitopes from M protein and 

12 epitopes from E proteins were found to be suitable. 

Based on maximum MHC-I binding alleles, four CTL 

epitopes from each protein were derived [Table 2]. 

 

3.3 Prediction of Helper T-lymphocyte (HTL) Epitopes 

Along with MHC-II Binding Alleles:  

A total of 208 HTL epitopes were obtained from M protein 

of which 17 epitopes were found to induce cytokine 

secretion. Based on maximum MHC-II binding alleles three 

HTL epitopes were selected [Table 3]. Similarly, from 61 

epitopes of E protein, four potential HTL epitopes were 

capable of inducing cytokine production and three epitopes 

are selected for further analysis based on maximum MHC-

II binding potential [Table 3].  

 

3.4 Prediction of Linear B-lymphocyte (LBL) and 

discontinuous epitopes: A total of 20 potential LBL 

epitopes were derived from M protein while seven LBL 

epitopes were obtained from E protein. Two LBL epitopes 

from each protein were isolated based on low toxicity and 

allergenicity with high antigenicity [Table 4]. The ElliPro 

of IEDB tool was used for discontinuous B-cell epitope 

prediction wherein seven discontinuous epitopes were 

derived. The PI score for discontinuous B-cell epitopes 

ranged between 0.559 and 0.787.  

 

3.5 Molecular Docking Analysis between CTL Epitopes 

and HLA-Alleles: Molecular docking CTL-HLA- 

A*11:01 (PDB ID: 4UQ2) results are shown in [Table 5]. 

The result showed stable interaction between 

‘LTWICLLQF’ epitope of M protein and HLA-A*11:01 

with a binding affinity (ΔG) of -12.5 Kcal/mol with KD of 

6.4E-10 at 25C. While the envelope protein-based CTL 

‘LLFLAFVVF’ epitope showed binding affinity of -8.1 

Kcal/mol with KD of 1.2E-6 at 25C. The CTL epitope 

‘NSVLLFLAF’ demonstrated highest binding affinity 

among envelope-based proteins which is -10 Kcal/mol with 

KD of 4.9E-8 at 25C. The docking poses of both 

LTWICLLQF- HLA- A*11:01 and LLFLAFVVF- HLA- 

A*11:01 complexes are represented in [Figure 2A and 2B] 

 

3.6 Population Coverage Analysis:  

In this study, the selected epitopes and their MHC-I and 

MHC-II restricted alleles were shown to cover an average 

99.24% population across the world [Figure 3]. The 

population coverage by country is given in [Table 6].. 

 

Table 2: Isolated T-Cytotoxic cell specific epitopes for multi-epitope vaccine development 

Protein 

MHC-I 

Super- 

type 

Isolated 

Peptide 
Antigenicity 

Binding 

alleles 
Immunogenicity Allergenicity Toxicity 

Membrane 

protein 

A2 FVLAAVYRI 0.5136 25 0.13985 Non-Allergen Non-Toxin 

A2 FLFLTWICL 1.4835 21 0.35397 Non-Allergen Non-Toxin 

A2 NLVIGFLFL 1.2917 16 0.34956 Non-Allergen Non-Toxin 

B58 LTWICLLQF 1.1393 16 0.06584 Non-Allergen Non-Toxin 

Envelope 

protein 

A2 FLLVTLAIL 0.5508 21 0.17608 Non-Allergen Non-Toxin 

A2 SVLLFLAFV 0.5155 16 0.19022 Non-Allergen Non-Toxin 

B8 LLFLAFVVF 0.6301 16 0.2341 Non-Allergen Non-Toxin 

B62 NSVLLFLAF 0.5256 21 0.11514 Non-Allergen Non-Toxin 

 

 

Table 3: Isolated T-Helper cell specific epitopes for multi-epitope vaccine development 

Protein Isolated peptide Antigenicity Immunogenicity 
Binding 

Alleles 

INF- γ 

induction 

IL-10 

induction 

IL-4 

induction 

Membrane 

Protein 

FLYIIKLIFLWLLWP 0.42 94.6742 26 Positive Positive Positive 

RFLYIIKLIFLWLLW 0.4833 93.4588 26 Positive Positive Positive 

YIIKLIFLWLLWPVT 0.4298 93.1993 17 Positive Positive Positive 

Envelope 

Protein 

LLFLAFVVFLLVTLA 0.8122 89.6735 34 Positive Positive Positive 

VNSVLLFLAFVVFLL 0.4339 86.7887 17 Positive Positive Positive 

GTLIVNSVLLFLAFV 0.426 96.8955 18 Positive Positive Positive 

 

 

Table 4: Isolated Linear B-cell specific epitopes for multi-epitope vaccine development 

 

Protein Peptide Probability Antigenicity Allergenicity Toxicity 

Membrane 

Protein 

LLESELVIGAVI 0.74 0.5385 Non-Allergen Non-Toxin 

IAIAMACLVGLM 0.73 0.9515 Non-Allergen Non-Toxin 

Envelope Protein 
AILTALRLCAYC 0.65 0.786 Non-Allergen Non-Toxin 

LLVTLAILTALR 0.59 0.6581 Non-Allergen Non-Toxin 
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Table 5: Docking results of identified CTL epitopes and 

HLA-A*11:01 complex 

Envelope 

protein 

Isolated CTL 

Epitope 

ΔG 

(kcal/mol) 
KD (M) 

LLFLAFVVF -8.1 1.20xE-06 

FLLVTLAIL -9.4 1.40xE-07 

NSVLLFLAF -10.0 4.90xE-08 

SVLLFLAFV -9.0 2.70xE-07 

Membrane 

protein 

LTWICLLQF -12.5 6.40xE-10 

NLVIGFLFL -9.4 1.20xE-07 

FLFLTWICL -9.5 1.10xE-07 

FVLAAVYRI -10.7 1.40xE-08 

 

Table 6: Population coverage of MHC-I and MHC-II 

targeted epitopes used in the chimeric vaccine 

development 
Country Coverage 

Austria 99.92% 

Belgium 98.28% 

Portugal 99.72% 

China 94.28% 

Denmark 90.64% 

Germany 99.89% 

India 97.64% 

Italy 99.59% 

Japan 98.93% 

Korea; South 99.17% 

Russia 98.87% 

Singapore 96.62% 

Spain 99.28% 

 

3.7 Conservancy Analysis:  

Epitope conservancy analysis of the IEDB tool used for this 

analysis and the results shown that all the epitopes (B-cell 

and T-cell) were 100% conserved for both M and E protein. 

It is expected that the use of conserved epitopes can provide 

broader protection across several strains or even species. 

The conservancy analysis result is shown in [Table 7]. 

 

Table 7: Epitope conservancy analysis 
Specific

ity 
Membrane protein Envelope protein 

MHC-I 

Epitope 
Identi

ty 
Epitope 

Identi

ty 

FVLAAVYRI 100% FLLVTLAIL 100% 

FLFLTWICL 100% SVLLFLAFV 100% 

NLVIGFLFL 100% LLFLAFVVF 100% 

LTWICLLQF 100% NSVLLFLAF 100% 

MHC-II 

FLYIIKLIFLWL

LWP 
100% 

LLFLAFVVFLL

VTLA 
100% 

RFLYIIKLIFLW

LLW 
100% 

VNSVLLFLAFV

VFLL 
100% 

YIIKLIFLWLL

WPVT 
100% 

GTLIVNSVLLFL

AFV 
100% 

B-cell 

LLESELVIGAV

I 
100% 

AILTALRLCAY

C 
100% 

IAIAMACLVGL

M 
100% 

LLVTLAILTAL

R 
100% 

 

 
Figure 2: (A) Simulated interaction between the T-

Cytotoxic cell specific epitope LLFLAFVVF (blue) and 

HLA-A*11:01 (grey). (B)Simulated interaction between 

the T-Cytotoxic cell specific epitope LTWICLLQF (pink) 

and HLA-A*11:01 (grey). 

 

 
Figure 3: Population coverage of isolated MHC-I and 

MHC-II epitopes used in the vaccine candidate. 

 

3.8 Multi-epitope chimeric vaccine candidates and 

Antigenicity Prediction:  
From M and E protein, eight CTL, six HTL, and four LBL 

epitopes were selected for final vaccine construct. CTL, 

HTL, and LBL epitopes were connected by AAY, GPGPG, 

and KK linkers respectively. To boost immunogenicity, 

TLR-2 agonist adjuvant sequence was added to the vaccine 

construct by means of EAAAK linker. In this study, five 

different adjuvants-based vaccine candidates were assessed 

for their immunogenicity (V1, V2, V3, V4, V5). PADRE 

sequence also added to increase efficacy and potency of the 

vaccine construct. Antigenicity of all potential candidates 

were evaluated and the vaccine sequence with the highest 

antigenicity was used for further analysis. The vaccine 

candidate ‘V5’ was chosen due to its antigenicity value of 

0.6606. It bears OmpA adjuvant protein in the N-terminal 

along with PADRE sequence. The outline of multi-epitope 

chimeric vaccine construct V5 is represented in [Figure 4]. 
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Figure 4: Outline of the designed Multi-epitope chimeric vaccine construct. 

 

3.9 Physicochemical properties and secondary structure 

of the Vaccine Construct:  

The vaccine construct was found to have a theoretical 

isoelectric point (pI) of 9.54 suggesting the protein to be 

basic in nature [Table 8]. The molecular weight was 

calculated to be around 71.43 kilodaltons. The vaccine 

construct is highly stable with an instability index (II) of 

19.97 (>40 implies instability). The predicted half-life of 

the protein was 30 hours in mammalian reticulocytes (in-

vitro), >20 hours (yeast, in-vivo) and >10 hours 

(Escherichia coli, in-vivo). The Grand average of 

hydropathicity (GRAVY) was estimated to be 0.590 

indicating hydrophobic in nature [Table 9]. This is due the 

presence of multiple hydrophobic pockets and respective 

aminoacids that facilitate protein-protein interactions 

through non-covalent bonding. The vaccine protein is 

soluble when over-expressed with a probability of 0.96609. 

The aliphatic index of the vaccine construct was 116.56 

implying high thermo-stability. The secondary structure by 

PSIPRED revealed, the structure to constitute 50% helix, 

16.97% strand, and 33.03% coil [Figure 5]. Only 16% of 

the sequence was found to be dis-ordered.  

 

 
Figure 5: Secondary structure of the chimeric vaccine 

construct. 

 

Table 8: Physicochemical Properties of selected vaccine 

construct 
Formula C3373H5245N823O859S11 

Mol. Weight (Dalton) 71423.43 

Amino acids 660 

Theoretical pI 9.54 

Half-life (hours) 30 

Instability index 19.97 

Aliphatic index 116.56 

Negatively charged residues 

(Asp + Glu) 
40 

Positively charged residues 

(Arg + Lys) 
66 

Solubility 
Soluble with 0.96609 

probability 

 

3.10 Tertiary Structure Prediction and Refinement: The 

homology modelling method of the Phyre2 server was used 

for modelling the 3D structure of vaccine protein candidate 

(V5). Protein structure refinement was executed with the 

GalaxyRefine server. Five potential refined models were 

obtained. The result of the best-refined model showed 

92.1% of Rama favored region, GDT-HA score 0.9163, 

RMSD value 0.498, MolProbity score 2.208, and poor 

rotamers 0.8. Model-2 was selected for further analysis 

[Figure 6C] [Table 9].  

3.11 Validation Of refining vaccine protein:  

The Ramachandran plot showed 87.1% residues in the most 

favored region, 9.8% residues in the additional allowed 

region, 0.7% residues in the generously allowed region and 

2.4% in the disallowed region [Figure 6A]. The z-score was 

calculated to be -2.82 in the ProSA-web server for vaccine 

protein [Figure 6B] and the construct was near 

experimentally derived structures.  The ERRAT score for 

the vaccine construct was 83.6127% (quality factor >80% 

is acceptable). The overall quality of the protein structure 

was satisfactory for further analysis.  

 

 

Table 9: 3D structure refinement results 
Model GDT-HA RMSD MolProbity score Poor rotamers Rama favored 

MODEL 1 0.9174 0.504 2.296 1.2 90.4 

MODEL 2 0.9163 0.498 2.208 0.8 92.1 

MODEL 3 0.9129 0.507 2.218 0.8 90.9 

MODEL 4 0.9163 0.499 2.224 1 91.8 

MODEL 5 0.9117 0.5 2.216 1 91.5 

Om pA

Adjuvant

A
K

F
V

A
A

W
T

L
K

A
A

A

F
L

F
L

T
W

IC
L

F
L

F
L

T
W

IC
L

L
T

W
IC

L
L

Q
F

L
L

F
L

A
F

V
V

F

F
L

L
V

T
L

A
IL

N
S

V
L

L
F

L
A

F

S
V

L
L

F
L

A
F

V

F
V

L
A

A
V

Y
R

I

L
L

F
L

A
F

V
V

F
L

L
V

T
L

A

R
F

L
Y

II
K

L
IF

L
W

L
L

W

V
N

S
V

L
L

F
L

A
F

V
V

F
L

L

Y
II

K
L

IF
L

W
L

L
W

P
V

T

G
T

L
IV

N
S

V
L

L
F

L
A

F
V

F
L

Y
II

K
L

IF
L

W
L

L
W

P

IA
IA

M
A

C
L

V
G

L
M

A
IL

T
A

L
R

L
C

A
Y

C

L
L

V
T

L
A

IL
T

A
L

R

L
L

E
S

E
L

V
IG

A
V

I

A
K

F
V

A
A

W
T

L
K

A
A

A

HHHHHH

T-Cytotoxic cell specific T-Helper cell specific B-Cell specific

AAY GPGPG K KEAAAK AAY

 

 

 

 Joy Dip Barua et al /J. Pharm. Sci. & Res. Vol. 13(8), 2021, 485-497

491



3.12 Active Site Prediction of TLR2 Receptor:  

SCFBio server predicted the geometrical shape of the active 

site as 0.7686 in x-center, -21.1211 in y-center and 30.8294 

in z-center. The residue of the active site is shown in 

[Supplementary Figure 2]. 

 

 
Figure 6: (A)Ramachandran plot for multi-epitope vaccine 

construct (B) Z-plot demonstrating the proximity of 

vaccine construct to the experimental models derived 

through X-ray and NMR analysis (C) Homology 

modelling based refined vaccine structure (D) Knowledge 

based energy per residue (E) Predicted QMEAN4 scores 

for the vaccine construct. 

 

3.13 Analysis of Protein-protein Docking Results:  

Molecular docking was executed in the HDOCK server 

where the vaccine (V5) was considered as a ligand and 

TLR2 as a receptor protein. The server provided ten 

potential docking positions based on their docking score. 

The first docking position out of ten docking poses showed 

the lowest docking score (-322.47 kcal/mol) with reduced 

RSMD (109.52 Å). Hence, the first docking position was 

selected as the ideal docking position shown in [Figure 7C]. 

The binding affinity (ΔG) was found to be -16.4 Kcal/mol 

and KD of 8.7xE-13 at 25C which implies a stable 

interaction. Further, the binding affinity of the complex 

using MM/GBSA method was calculated to be -13.21 

Kcal/mol. The total interface area (Å2) between the receptor 

and ligand was 2423.85. There were 142 residues at the area 

of interface [Supplementary Table 4]. Ten hydrogen 

bonding interactions were observed during molecular 

docking [Supplementary Table 3]. Interestingly, 327 Ser of 

the vaccine construct which was found to participate in 

hydrogen bonding was also identified as an interaction hot-

spot thereby validating the molecular docking [Figure 7B] 

[Supplementary table 1]. The residues 411 Leu, 413 Leu 

and 415 Phe of the vaccine construct were determined to be 

Hot-regions of interaction [Supplementary table 2].  

 
Figure 7:(A) Contact map showing the inter-molecular 

distance between vaccine and TLR-2 residues (B) 

Interaction hot-spots (orange) between TLR-2 (cyan) and 

vaccine construct (blue) (C) Simulated interaction 

involving the vaccine construct (grey) and TLR-2 

(yellow). 

 

3.14 Molecular Dynamics Simulation:  

Molecular dynamics revealed the mobility around Vaccine-

TLR2 interface was restricted while some degree of 

mobility was observed at the ends [Figure 8G]. The 

Eigenvalue found for the complex was 3.988793e-05 which 

is significantly high, implying a stable complex formation 

[Figure 8C].  The values of the B-factor inferred via NMA 

were RMS-equivalent [Figure 8A] and [Figure 8B]. The 

variance [Figure 8D] associated with each normal mode has 

been inversely related to the eigenvalue[65, 66]. The 

deformability of the complex depends on the individual 

distortion of each residue which is represented by hinges in 

the chain [Figure 8A]. Coupling between residue pairs was 

shown by the covariance matrix where various pairs 

displayed correlated, anti-correlated, and uncorrelated 

motions respectively defined by red, blue, and white colors 

[Figure 8E]. An elastic network generated level of stiffness 

indicates the association of atoms along the complex as 

springs [Figure 8F].  The atomic network is relatively 

elastic shown by the light grey dots on the residue map 

[Figure 8F]. The interacting residues of vaccine-TLR-2 are 

shown in [Figure 8H].    

3.15 In-silico Evaluation of Immune Response:  

The C-ImmSim immune simulator server considers the 

efficient immune responses of the cell state and models the 

immune system. The results of immune simulation on the 

C-ImmSim server confirmed compatibility with real 

immune responses. The primary response was observed 

when IgM concentration increased upon vaccine 

administration. In the response to the booster doses, 

secondary and tertiary immune reaction showed a 

significant increase in the concentration of IgG1+IgG2, 

IgM, and IgG+IgM antibodies [Figure 9A]. A consistent 
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increase in the B-cell and T-Helper cell populations were 

noted at day 30 and day 60 of which majority of them were 

in active phase [Figure 9B and 9C]. An adequate amount of 

cytokine production was detected [Figure 9D]. 

Interestingly, a strong IFN- response was visible implying 

an anti-viral potential of the vaccine construct. The levels 

peaked with the administration of booster doses on day 30 

and day 60. Similarly, a modest level of other cytokines 

including Interleukin-10 were observed. The dendritic cell 

and macrophage activity were also visible [Figure 9E and 

9F]. Both humoral and cell-mediated immune system was 

activated upon vaccination [supplementary report 1 and 

supplementary report 2]. 

3.16 Disulfide Engineering:  

Disulfide engineering of the final modeled structure was 

performed for the purpose of stabilization where highly 

unstable protein sequence regions were mutated with 

cysteine. A total of 60 amino acid residue pairs were 

identified by the DbD2 server to enable disulfide 

engineering. However, five residue pairs [Table 12] were 

chosen for mutation after evaluation on parameters such as 

energy, chi3, and B-factor i.e. the energy value was less 

than 2.2 and chi3 (χ3) should be between -87 to +97 [84]. 

Therefore, LEU8-ALA14, GLY69-GLU79, GLY190-

ARG203, TYR258-LYS302, PHE565-GLY598 [Figure 10] 

residues were mutated to cysteine residues.  

3.17 Codon Adaptation and In-silico Cloning:  

The aim of codon optimization was to maximize expression 

of viral based vaccine protein into the E. coli K12 strain host 

system by removing existing codon bias. A 1980 base pairs 

long optimized nucleotide sequence was obtained from Java 

codon Adaptation Tool (Jcat). The GC-content of optimized 

codon sequence was found to be 51.8687% which is within 

the optimal range of 30% to 70%. Codon Adaptation Index 

(CAI) value was calculated to be 0.93666 (the closer the 

CAI value is to 1, the better the adaptation) which implies 

good expression levels. Finally, the optimized codon was 

inserted between Xhol and BamHl restriction sites at 

multiple cloning site (MCS) of the E. coli plasmid vector 

pET28a(+) where the target area is shown in red color 

[Figure 11]. Additionally, a poly-histidine tag (6xHis) was 

adjoined at the C-terminal to facilitate protein purification 

[Figure 4] and [Figure 11].        

 
Figure 8: Molecular dynamics simulation analysis of 

vaccine protein-TLR2 complex. Protein-protein complex 

stability was investigated through (A) B-factor (B) 

eigenvalue (C) variance (D) deformability (E) covariance 

(F) elastic network analysis (G) Atomic Mobility and (H) 

Inter-residue interaction network.  

 
Figure 9: Simulated immune response after administration of the vaccine candidate (A) Antigen and immunoglobulins 

per millilitre (B) B-lymphocytes cell population (C) CD4+ helper T-cells population per state (D) Induced levels of the 

cytokine and Simpson index D (E) Macrophages population per state (F) Dendritic cell population per state. 
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Table 10: Residues identified for Disulphide engineering 
Residue 1 Residue 2 Bond 

Sequence 

number 
Aminoacid 

Sequence 

number 
Aminoacid χ3 kcal/mol Σ B-factor 

8 LEU 14 ALA 91.99 1.85 0 

69 GLY 79 GLU -86.05 1.57 0 

190 GLY 203 ARG -83.24 1.58 0 

258 TYR 302 LYS 95.66 0.67 0 

565 PHE 598 GLY -74.18 1.47 0 

 

 
Figure 10: Disulphide engineered vaccine construct 

wherein mutated pairs are represented as red spheres. 

 

 

 
Figure 11: In-silico restriction cloning of the vaccine gene 

sequence into pET-28a(+) expression vector shown as red 

region encompassed between Xhol (173) and BamHI 

(489). Figure 11: In-silico restriction cloning of the 

vaccine gene sequence into pET-28a(+) expression vector 

shown as red region encompassed between Xhol (173) and 

BamHI (489). 

 

4.0 DISCUSSION: 

SARS-CoV-2 is a potent contagion known for a global 

pandemic infecting many populations across the world, thus 

developing an effective vaccine is one of the best ways to 

contain transmission. Designing a novel vaccine candidate 

in short period of time would be time-consuming and 

expensive. There is additional risk associated with live or 

attenuation based vaccines which contain unwanted 

allergens[67] Multi-epitope subunit vaccines eliminate the 

presence of allergens thus reducing adverse effects[68]. Cost-

effectiveness, safety, improved potency and 

immunogenicity of conserved epitopes are the pillars of 

epitope based chimeric vaccine design [3].With the 

availability of protein sequence database and help of 

advanced in-silico based analysis, it is now possible to 

design a peptide vaccine based on immunoinformatics 

through different computational tools. Particularly, this 

approach showed potency against the Oropouche virus[69], 

Rift valley fever virus[39], Dengue virus[70], etc. 

Acknowledging the benefits of multi-epitope vaccines, a 

novel multi-epitope chimeric vaccine was intended to be 

designed against COVID-19. 

Similar attempts were made to target the spike (S) 

glycoprotein through immune informatics  [15, 71]. However, 

the importance of M and E protein for viral entry, 

replication and infection were avoided[72, 73]. The membrane 

based structural glycoproteins offer an ideal target [74-76]. 

They showed good antigenicity [Table 1] among retrieved 

proteome sequences thus we selected M and E protein to 

design a vaccine model in this study. 

Vaccines trigger T-cell and B-cell based responses 

simultaneously. A vaccine stimulates plasma cells that are 

responsible for antibody production and pathogenic 

recognition[77]. However, memory B-cells play a crucial 

role in recognizing the pathogenic epitope profile to prevent 

disease. The CD8+ and CD4+ T-cells impart necessary 

antiviral immunity[78]. It is important to derive CTL, HTL, 

and LBL epitopes which are needed to elicit T-cell and B-

cell response. Therefore, a potent multi-epitope vaccine 

should contain CTL, HTL, and LBL epitopes to provoke an 

innate immune response against specific incoming 

pathogen[68].  

Based on antigenicity, allergenicity, toxicity, cytokine 

production, and highest binding affinity of HLA molecules 

we selected eight CTL and six HTL epitopes from both M 

and E proteins using various computational tools. Four LBL 

epitopes from both M and E protein were also considered 

after assessing their antigenicity, allergenicity, and 

probability score from both protein sequences. Roy, 

Tonmoy et al. (2020) isolated antigenic epitopes from S, M, 

and E proteins. However, it lacked the design of chimeric 

vaccine construct and its interaction with TLR[79]. Another 

study targeted E protein for predicting epitopes with the aim 

of constructing a vaccine, but no B-cell epitopes were 

predicted [1]. The current study targeted both M and E 
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protein for predicted epitopes and identified 8 CTL, 6 HTL 

and 4 LBL epitopes which are highly antigenic, non-

allergenic, and non-toxic. This study also confirmed that the 

predicted epitopes have not been reported yet.  Validation 

of CTL-HLA-A*11:01 interaction was performed to 

demonstrate efficacy. The epitope ‘LTWICLLQF’ showed 

the highest binding affinity of -12.5 Kcal/mol and KD of 

6.4E-10 at 25C. Similarly, promising LBL and HTL 

epitopes were also isolated. Five different vaccine 

candidates with five different adjuvants along with the 

PEDRE sequence were assembled. Studies show, the 

presence of PADRE sequence in a vaccine construct 

demonstrated better CTL response [80]. Each epitope was 

joined by suitable linkers to ensure a better protective 

response. Adjuvants are needed to boost the innate immune 

response. Among the five constructed vaccine sequences, 

vaccine candidate V5 was chosen based on antigenicity. 

The vaccine candidate was found to be non-allergen and 

non-toxic. The molecular weight of the V5 construct is 71.4 

KDa, the physicochemical studies have also shown that the 

vaccine protein is basic in nature, thermo-stable and 

soluble. The secondary structure of the vaccine construct 

was analyzed before generating a 3D model. Refinement of 

the model was performed and the best model was selected 

based on RMSD, MolProbity, and Rama favored value. The 

active site of TLR-2 was predicted and molecular docking 

was performed. Stable interaction between the vaccine 

construct and TLR-2 was confirmed by the binding affinity 

(ΔG) of -16.4 Kcal/mol, KD of 8.7xE-13 at 25C and 

MMGBSA based binding affinity of -13.21 Kcal/mol. 

Further, normal mode analysis based molecular dynamics 

showed a high eigenvalue of 3.988793e-05 validating the 

executed docking simulation. Immune simulation showed 

the induction of both humoral and cell-mediated based 

response. Disulfide bridging was undertaken to improve 

stability. Finally, the vaccine sequence was optimized for 

E. coli strain K12 before insertion within the pET28a(+) 

vector for gene cloning and expression. A poly-histidine 

(6xHis) tag was added at the C-terminal to facilitate protein 

purification through the broadly available Nickel-

Nitrilotriacetic acid (Ni-NTA) sepharose column. The 

designed vaccine candidate holds promise but to continue 

the vaccine development process in-vitro and in-vivo 

serological assays are highly recommended.  

 

5.0 CONCLUSION: 

The control of COVID-19 pandemic requires strengthening 

many areas of public health including diagnostics, 

epidemiology and drug development. Preventive strategies 

such as vaccines and mathematical modelling can decrease 

infection rates and their associated fatalities. The in-silico 

epitope-based vaccine design complements this effort. The 

multi-epitope subunit vaccine against SARS-CoV-2 

successfully elicited both humoral and cell-mediated 

response during immune simulation. The recommended 

next steps would include in-vivo and in-vitro serological 

assays to further the vaccine development process. 
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Supplementary figure 1: Vaccine structure showing the discontinuous B-cell epitopes as pale-yellow spheres. 

 

 
Supplementary figure 2: Receptor structure wherein pale-yellow spheres represent the active site residues. 

 

 
Supplementary figure 3: Cell counts upon vaccine administration up to 100 days, Mem is memory. 

 

 

 

 

Figure 1: Cell counts shown. Legend: Act= act ive, Intern= internalized the Ag, Pres I I = present ing on MHC II,

Dup = in the mitot ic cycle, Anergic = anergic, Rest ing = not act ive.
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Supplementary figure 4: Cell counts upon vaccine administration up to 100 days, Mem is memory. 

 

 
Supplementary figure 5: Cell counts upon vaccine administration up to 350 days, Mem is memory. 

 

Figure 2: Legend: symbols as figure above.
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Figure 1: Cell counts shown. Legend: Act= act ive, Intern= internalized the Ag, Pres I I = present ing on MHC I I,

Dup = in the mitot ic cycle, Anergic = anergic, Rest ing = not act ive.
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Supplementary figure 6: Cell counts upon vaccine administration up to 350 days, Mem is memory. 

 

 

 
Supplementary figure 7:  Antibodies and antibody-

complexes produced in response to coronavirus antigen. 

 

 
Supplementary figure 8: Interleukins and cytokines 

secreted in response to vaccine administration.

Supplementary Table 1: Interaction Hot-spots identified by Spot-on server (vaccine construct is designated as chain B) 

Residue Index Residue Name Residue Chain 

588 LYS B 

584 LEU B 

414 ALA B 

327 SER B 

309 ILE B 

 

 

Figure 1: Cell counts shown. Legend: Act= act ive, Intern= internalized the Ag, Pres I I = present ing on MHC I I,

Dup = in the mitot ic cycle, Anergic = anergic, Rest ing = not act ive.

2

Figure 3: The virus, the immunoglobulins and the immunocomplexes.

Figure 4: Concent rat ion of cytokines and interleukins. Inset plot shows danger signal together with leukocyte growth

factor IL-2.

4

Figure 3: The virus, the immunoglobulins and the immunocomplexes.

Figure 4: Concent rat ion of cytokines and interleukins. Inset plot shows danger signal together with leukocyte growth

factor IL-2.
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Supplementary Table 2: Interacting hot-regions identified using Hot-region server (TLR-2 is designated as Chain A while 

vaccine construct is designated as Chain B) 

Interface 

Name 

Residue 

Number 

Residue 

Type 
Chain 

Relative 

Complex 

ASA 

Relative 

Monomer 

ASA 

Pair 

Potential 

Hotspot 

Status 

Hot-

region 

Status 

Complex 

ASA 

Monomer 

ASA 

Final 31 ASP A 26.09 54.88 8.9 NH  36.63 77.05 

Final 32 ALA A 83.16 108.33 6.35 NH  89.77 116.94 

Final 33 SER A 39.47 66.82 5.09 NH  45.98 77.85 

Final 35 VAL A 10.63 47.77 19.53 H - 16.1 72.34 

Final 39 ARG A 13.32 46.75 12.99 NH  31.8 111.63 

Final 40 SER A 37.99 68.58 15.13 NH  44.26 79.89 

Final 61 PHE A 17.22 50.75 19.8 H - 34.36 101.23 

Final 137 GLN A 41.35 66.72 13.81 NH  73.81 119.1 

Final 160 GLU A 40.13 81.14 4.9 NH  69.13 139.76 

Final 161 THR A 13.21 34.2 11.34 NH  18.4 47.63 

Final 316 ARG A 5.55 34.7 20.6 H - 13.25 82.86 

Final 318 HIS A 26.92 53.64 5.78 NH  49.23 98.09 

Final 321 GLN A 29.7 65.44 22.46 NH  53.01 116.81 

Final 322 PHE A 64.03 71.92 0 NH  127.73 143.47 

Final 323 TYR A 32.89 81.92 18.52 NH  69.97 174.3 

Final 324 LEU A 64.66 89.43 11.68 NH  115.5 159.75 

Final 325 PHE A 47.26 87.81 6.11 NH  94.27 175.17 

Final 329 SER A 32.06 56.17 8.52 NH  37.35 65.44 

Final 332 TYR A 11.36 16.01 20.85 H - 24.18 34.06 

Final 333 SER A 17.12 26.62 7 NH  19.95 31.01 

Final 336 GLU A 18.34 46.98 15.8 NH  31.59 80.93 

Final 345 ASN A 4.16 40.63 16.27 NH  5.99 58.48 

Final 347 LYS A 36.13 77.24 8.01 NH  72.55 155.1 

Final 349 PHE A 16.74 53.91 16.41 NH  33.4 107.54 

Final 350 LEU A 16.91 32.17 24.78 H - 30.2 57.46 

Final 357 GLN A 9.74 34.45 25.66 H - 17.38 61.5 

Final 358 HIS A 7.09 39.66 13.89 NH  12.97 72.53 

Final 360 LYS A 13.89 63.06 9.98 NH  27.9 126.63 

Final 371 LEU A 9.52 37.64 22.39 H - 17.01 67.23 

Final 375 GLU A 64.35 79.98 7.72 NH  110.84 137.77 

Final 376 TYR A 6.54 42.91 25.96 H - 13.92 91.29 

Final 379 ASN A 18.63 49.72 16.5 NH  26.81 71.57 

Final 383 LYS A 38.72 90.22 10.14 NH  77.75 181.17 

Final 384 GLY A 2.23 41.06 10.24 NH  1.79 32.89 

Final 396 GLN A 27.37 42 14.87 NH  48.86 74.97 

Final 422 ARG A 28.74 43.73 22.76 NH  68.61 104.41 

Final 466 ASN A 28.46 36.49 11.49 NH  40.96 52.53 

Final 486 ARG A 15.94 56.37 24.54 H - 38.07 134.59 

Final 508 SER A 15.97 33.03 11.95 NH  18.6 38.48 

Final 532 THR A 32.15 59.34 12.5 NH  44.78 82.64 

Final 561 LYS A 30.45 49.76 5.66 NH  61.14 99.92 

Final 89 LYS B 16.85 24.42 17.02 NH  33.83 49.04 

Final 90 VAL B 6.39 24.27 26.22 H - 9.67 36.75 

Final 223 VAL B 29.27 42.07 11.35 NH  44.33 63.71 

Final 224 PRO B 33.79 64.64 4.96 NH  46 88 

Final 241 PHE B 69.14 105.19 6.55 NH  137.92 209.83 

Final 242 ASP B 25.33 55.77 8.67 NH  35.56 78.3 

Final 244 ALA B 13.43 34.15 14.62 NH  14.5 36.87 

Final 245 ASP B 22.2 65.77 8.76 NH  31.17 92.34 

Final 297 ASN B 18.1 69.9 14.02 NH  26.05 100.61 

Final 306 GLN B 25.72 72.44 15.21 NH  45.91 129.31 

Final 307 ASN B 23.65 107.12 6.67 NH  34.04 154.19 

Final 309 ILE B 2.03 19.07 27.26 H - 3.55 33.4 

Final 310 SER B 15.81 48.68 9.95 NH  18.42 56.71 

Final 323 ASN B 48.47 84.17 7.65 NH  69.77 121.16 
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Supplementary Table 3: Hydrogen bonding between vaccine construct (designated chain B) and TLR-2 (designated chain 

A) 

Acceptor Donor 
Hydrogen 

bonding 

Residue 1 Position Atom1 Chain Residue 2 Position Atom 2 Chain 
Distance 

(Å) 

GLN 137 NE2 A TYR 660 OH B 2.71 

ASN 345 ND2 A GLN 306 O B 3.25 

LYS 360 NZ A LEU 581 O B 2.87 

ASN 379 ND2 A TYR 421 OH B 3.17 

ARG 486 NH2 A ASP 245 OD1 B 1.53 

SER 508 OG A ASP 242 OD1 B 2.47 

SER 327 OG B ASP 31 OD2 A 2.53 

LYS 89 NZ B TYR 323 OH A 3.21 

LYS 588 NZ B SER 329 O A 2.79 

TRP 585 NE1 B GLU 336 OE2 A 3.10 

 

Supplementary Table 4: Interaction data in the Vaccine-TLR-2 complex (TLR-2 is designated as MOL1 and Vaccine is 

designated as MOL2) 
Title Value 

Buried area upon the complex formation (Å2) 4847.7 

Buried area upon the complex formation (%) 7.82 

Interface area (Å2) 2423.85 

Interface area MOL1 (%) 9.51 

Interface area MOL2 (%) 6.64 

POLAR Buried area upon the complex formation (Å2) 2857.3 

POLAR Interface (%) 58.94 

POLAR Interface area (Å2) 1428.65 

NON-POLAR Buried area upon the complex formation (Å2) 1990.3 

NON-POLAR Interface (%) 41.06 

NON-POLAR Interface area (Å2) 995.15 

Residues at the interface TOTAL (n) 142 

Residues at the interface_MOL1 75 

Residues at the interface_MOL2 67 

 

Final 324 LYS B 35.66 65.82 11.52 NH  71.61 132.17 

Final 327 SER B 6.04 62.05 11.6 NH  7.04 72.29 

Final 328 VAL B 85.13 104.99 10.09 NH  128.92 158.99 

Final 359 LYS B 49.19 64.54 9.31 NH  98.77 129.6 

Final 360 PHE B 27.82 45.45 16.91 NH  55.49 90.67 

Final 361 VAL B 39.92 67.24 16.26 NH  60.45 101.83 

Final 363 ALA B 13.14 75.73 13.66 NH  14.18 81.75 

Final 410 LEU B 22.39 50.56 18.04 NH  40 90.31 

Final 411 LEU B 18.59 76.34 30.36 H + 33.21 136.37 

Final 413 LEU B 12.05 37.84 22.08 H + 21.52 67.6 

Final 414 ALA B 1.27 58.95 13.41 NH  1.37 63.64 

Final 415 PHE B 14.56 31.82 26.74 H + 29.05 63.47 

Final 421 TYR B 36.42 52.69 13.07 NH  77.48 112.1 

Final 577 LYS B 37.9 61.43 12.09 NH  76.11 123.35 

Final 578 LEU B 38.64 49.33 12.66 NH  69.03 88.11 

Final 581 LEU B 38.22 84.57 10.78 NH  68.27 151.06 

Final 582 TRP B 66.89 66.9 7.08 NH  166.79 166.82 

Final 584 LEU B 3.96 43.79 30.89 H - 7.07 78.22 

Final 585 TRP B 49.66 75.24 6.96 NH  123.82 187.62 

Final 588 LYS B 6.82 63.81 13.34 NH  13.7 128.13 

Final 604 ILE B 31.68 70.33 17.07 NH  55.48 123.16 

Final 609 ARG B 21.62 52.68 18.01 NH  51.61 125.79 

Final 654 LYS B 46.34 67.09 9.22 NH  93.05 134.73 

Final 660 TYR B 54.48 92.4 14.43 NH  115.91 196.58 
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