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Abstract 
L-asparaginase is the widely used enzyme drug to treat Acute Lymphoblastic Leukemia (ALL). It also finds its applications in
food industry to minimize the acrylamide formation in fried foods. The enzyme hydrolyses L-asparagine into Aspartic acid and
Ammonia. The sequential modeling and optimization strategy was applied for submerged fermentation to produce L-
asparaginase from Enterobacter aerogenes MTCC 111using Artificial Neural Networks (ANN) and Genetic Algorithm (GA)
respectively. Effects of process variables i.e., incubation time (0-54 hours), pH (6-10), temperature (20-35˚C), substrate
concentration (0.5-1.5 % w/v) and inoculum size (0.5-2 % v/v) were examined on enzyme activity. It is observed that process
variables had a considerable effect on L-asparaginase production. Neural networks model was developed for the process and
predicted values were compared with the values generated from statistical model. Then the process was optimized using
Genetic Algorithm. It is found that ANN model prediction (R2=0.9928) is more accurate than the statistical model prediction
(R2=0.9527). Optimal process variables were found to be incubation time (40h), pH (6), temperature (34˚C), substrate
concentration (1.2% w/v) and inoculum size (2% v/v). Maximum enzyme activity was experimentally observed as 20.15 IU/ml
which is 3 folds greater than the value before optimization.
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INTRODUCTION 
L-asparaginase is a hydrolytic enzyme of choice used for
lymphoblastic leukemia therapy [1]; is also a significant
substance in food industry as it can diminish acrylamide
formation due to Maillard reaction between the carbonyl
group of reducing sugars and free amino acid asparagine.
The enzyme drug is widely produced by the flora, fauna
and microbes. Microbial cells are superior source of anti-
cancer drugdue to ease of culture and convenient
downstream processing steps like extraction and
purification, facilitating the bulk manufacture of enzyme.
A range of bacteria like Escherichia coli [2], Erwinia
carotovora [3,4], Erwinia aroideae [5], Bacillus sp. [6],
Zymomonas mobilis [7], Pseudomonas aeruginosa [8],
Thermus thermophiles [9], Bacillus aryabhattai ITBHU02
[10], Bacillus licheniformis [11], Enterobacter aerogenes
[12], Bacillus subtilis B11−06 [13] and Nocardiopsis alba
NIOT-VKMA08 [14] have been found to produce L-
asparaginase. Though E. coli and Erwinia sp. mainly
produces L-asparaginase, anaphylactic reactions of E.coli
L-asparaginase and less half-lifeof Erwinia asparaginase
than   E. coli [15] proposing the requirement to find new L-
asparaginase that is serologically different but with
analogous therapeutic property. Even though microbial
production and purification of    L-asparaginase are well
established, yields of the enzyme have been low [16]. So,
screening of physical and nutritional parameters and
evaluation is the considerable phase in the progress of
bioprocess. In this respect, studying the effect of one
variable at a time which is a traditional optimization
technique of bioprocess is time consuming, expensive and
tedious. In contrast, statistical optimization methods are
favored in general because of their advantages [17, 18] and
statistical experiments shrink the error in defining the effect

of variables in a reasonably priced way [19, 20]. The 
traditional One-Factor-at-A-Time (OFAT) technique does 
not reveal the interactions between different factors though 
a huge number of experiments have been conducted. 
Response Surface Methodology (RSM) [21] and Taguchi 
methodology [22] are some of statistical methods through 
which above said limitation can be overcome and are 
increasingly being used in process optimizations. RSM 
reveals the interaction effects among numerous process and 
response variables that can be quantified, and the tool is a 
commanding method for testing several factors of 
bioprocess and offers less number of experimental runs 
than OFAT method. Sometimes, quadratic polynomial 
generated in RSM model-building stage is incapable to 
symbolize a given relationship to the preferred degree of 
accuracy, so confirming the applicability of RSM to all 
modeling and optimization studies is difficult [23]. The 
alternative techniques in this perspective include artificial 
neural networks (ANNs) and genetic algorithms (GAs). An 
ANN model mimics the learning aptitude of brain that 
takes a whole ‘black box’ methodology to model the data. 
It is capable to model almost all types of nonlinear 
functions and a past knowledge of the system dynamics is 
not a requisite [24]. GAs are optimization algorithms which 
are unorthodox search based and help in the direct search 
for a elucidation to a problem by imitating part of the 
process of natural evolution. Through a given set of 
alternatives GA perform direct random searches to find the 
finest choice with regard to specified criterion for goodness 
of fit, which are expressed as a fitness function. Use of 
ANNs and GAs in biochemical engineering and 
environmental biotechnology is well established, with 
applications ranging from pattern recognition in 
chromatographic spectra, modeling of analytical 
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biochemistry signals, cancer research, expression profiles, 
to functional analyses of genomic and proteomic 
sequences, analyzing changes in soil microbial community 
composition in response to hydrocarbon pollution and 
bioremediation etc., [25]. In the present study, to trim down 
the experimental error a feed forward neural network 
(FFNN) with error back propagation is applied for non-
linear modeling and subsequently GA optimization of L- 
asparaginase production from Enterobacter aerogenes 
MTCC111 is performed. 
 

MATERIALS AND METHODS 
Microorganism and its Culture 
Enterobacter aerogenes MTCC 111 (KCTC 2190) imported 
from IMTECH, Chandigarh, India was used in this work 
and the inoculum was cultured on growth media containing 
beef extract,   1 g; yeast extract, 2 g; peptone, 5 g; NaCl, 5 
g and agar, 15 g in 1 litre of distilled water. The strain was 
maintained at 4°C with regular sub cultures after every 4 
weeks.  
Analytical Methods 
Activity of crude L-asparaginase enzyme was done by 
quantifying ammonia development by spectroscopy. 
Standard Nesslerization technique was employed for 
assessment of L-asparaginase activity by quantifying the 
extent of ammonia liberated during L-asparagine hydrolysis 
spectroometrically at 480 nm (JASCO V 600). One unit 
(IU) of L-asparaginase activity is defined as the magnitude 
of enzyme which liberates 1 μmol of ammonia per minute 
under the typical assay conditions [26]. 
Experimental Design for Statistical Model 
RSM can be used for experimental designing, model 
building, evaluationof influence of process variables and 
searching for best possible process conditions for pleasing 
responses. RSM has been extensively applied for 
bioprocess optimization. On the basis of previous 
experimentations among all the variables tested, five 
(incubation time, pH, temperature, substrate concentration, 
and inoculum size) were observed to havethe major 
influence on L-asparaginase activity. The actual levels of 
coded factors were shown in table 1. Successive 
optimization on these five factors was done through Full 
Factorial Central Composite Design (FFCCD) by putting 
enzyme activity as the response function of interest. The 
response function was approximated by a second degree 
polynomial of quadratic using the method of least squares. 
To find out the curvature and to balance for the lack of fit 
values experiments at central points were run, which 
specify the model significance. Incubation time, pH, 
temperature, substrate concentration and inoculum size 
were nominated as X1, X2, X3 and X4, X5 respectively. The 
performance of the system was described by the second-
degree polynomial as mentionedin equation (1): 
 
Y = B0+ƩBiXi+ƩBiiXi

2+ƩBijXiXj ……(1) 
Where Y is response; B0=constant, Bi=linear coefficient, 
Bii=quadratic coefficients and Bij=second-order interaction. 
The variable, Xi is the non-coded independent variable. 
Thus equation 1 now turns into equation (2): 
 

Y=B0+B1X1+B2X2+B3X3+B4X4+B5X5+B6X1
2+B7X2

2+B8X3
2+B9X4

2+B10X5
2+B12X1X2+B13X1X3+B14X1X4+ 

B15X1X5+B23X2X3+B24X2X4+B25X2X5+B34X3X4+B35X3X5+
B45X4X5    ….(2) 
 
Where Y=predicted response, and X1, X2, X3, X4 and X5 are 
input variables. B0=constant and B1, B2, B3, B4 and B5 are 
linear coefficients. B6, B7, B8, B9 and B10 are nonlinear 
coefficients. B12, B13, B14, B15, B23, B24, B25, B34, B35 and 
B45 are cross-product coefficients [27]. 
Modeling using Artificial Neural Networks (ANNs) 
ANN models imitate the role of a biological network, made 
up of neurons and are applied to decipher composite 
functions in diverse applications. Simple synchronous 
processing elements are included in NN which are 
motivated by the biological nerve systems. Neurons are the 
basic unit of ANN and they are linked to one another by 
synapses, and a weight factor is allied with every synapse 
[28]. Back-Propagation (BP) is one of the trendiest 
algorithms in ANN which is used in this study, with one 
hidden layer enhanced with numerical optimization 
technique named Levenberg-Marquardt (LM) [29]. 
Process Optimization by GA 
A theoretical universal search and optimization technique 
called GA, copies the metaphor of natural biological 
evolution. GA works on a population of likely solutions 
implying the principle of survival of the fittest to produce 
sequentially superior estimations to a solution. A fresh set 
of estimation is produced at each generation by the process 
of individual selection as per their fitness level in the 
domain of problem and their replication using rented 
operators from natural genetics. This practice directs to the 
progression of individual populations that better suited for 
their environment compared to the individuals from which 
they were created, just as in normal adaptation process. 
The GA optimization begins with initialization of the 
population of solutions P(t). The population size was 20 
(4*No. of variables) and the initial population type chosen 
was double. In every chromosome the evaluation function 
computes the fitness value; in this study, the error between 
target output and current output was the fitness function. 
The choice of the individuals to generate the successive 
generation has a vital role in GA. The apparent choice 
begins from each individual’s fitness which provides the 
error between the objective and actual outputs, so that 
smallest error generating individual has greater chance to 
be elected. Many methods like Rank selection, Geometric 
ranking method and Roulette wheel selection etc., are used 
for the process of the selection and Rank method was opted 
in the present optimization. Crossover and mutation offer 
the fundamental search mechanism of a GA. The operators 
build fresh solutions based on preceding solutions 
produced. Crossover accepts two individuals and generates 
two novel recombinant individuals, but mutation alters the 
individual by arbitrary adjustment in a gene to turn out a 
fresh solution. Use of these genetic operators and their 
derivatives depends on chromosome depiction. Scattered 
option was used as crossover operator and other constraints 
used for reproduction and mutations are 0.8 crossover rate 
and constraint dependent mutations function. Other 
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approximated parameters were forward migration direction, 
0.2 migration fraction and 20 as migration interval. The 
stopping criterion usually advises the upper limit of 
iterations or verifies if the finest solution attained is 
acceptable. Values considered for stopping criteria includes 
maximum number of iterations equals to 500 (100* number 
of variables), infinite time limit, infinite fitness limit, 50 
stall generations, infinite stall time limit, function tolerance 
and nonlinear constraint tolerance of 10-6 [30]. 
 

RESULTSAND DISCUSSION 
Model Development and Optimization of bioprocess 
parameters by Full FFCCD 
The use of RSM resulted in the quadratic regression 
equation for Asparaginase activity (Eq.3).  A FFCCD with 
three coded levels for all five factors: Incubation time (X1), 
pH (X2), temperature (X3), substrate concentration (X4) and 
inoculum size (X5) was used and the input variable levels 
for central composite design were considered as per the 
preliminary outcomes. Table2 describes the results attained 
for enzyme activity through design of experiments. The 
outcomes of present study illustrated that the final response 
was reliant on the blend of incubation time, pH, 
temperature, substrate concentration and inoculum size. 
The second-order polynomial equation fitted to the 
experimental data of the CCD (described as coded values) 
for enzyme activity prediction is given in equation (3). 
Y=-16.30620-
0.088620*X1+4.66715*X2+1.50271*X3+8.04739*X4-
15.85249*X5-0.00591667*X1*X2+0.00541111*X1*X3-
0.0005*X1*X4-0.000333333*X1*X5- 
0.039417*X2*X3-0.22625*X2*X4-
0.37417*X2*X5+0.10467*X3*X4+0.10444*X3*X5-
0.04*X4*X5-0.000254406*(X1

2)-0.25931*(X2
2)-

0.026973*(X3
2)-4.06897*(X4

2)+ 

6.38713*(X5
2)  ……….(3)

 

Analysis of Variance (ANOVA) was performed to confirm 
the suitability of the model. A calculated F value of 29.21 
for the quadratic regression model suggests that the model 
is significant. The present analysis attained the CV value of 
6.77% that validates a higher consistency of the trials. The 
R2 for response of L-asparaginase activity is 0.9527, 
signifying that the model can elucidate 95.27 % of 
inconsistency in the response and only 4.73 % of the 
variations for enzyme activity is not described by it. The 
value of Adj R2 for L-asparaginase activity (0. 9201) is also 
convincing, supporting the significance of the model 
developed. The values of Prob>F smaller than 0.05 denote 
that the model terms are significant and in this case X2, 
X3,X4, X1X3, X2X3, X2X5, X3X4, X3X5, X3

2 and X5
2 were 

found to be significant.  
 
Developmentof Neural Network Model and Result 
Analysis 
With five inputs and one output using feed forward back 
propagation network and TRAINLM training function 

training, testing and validation of NN were carried out. 
Table 2 describes the results. The outcomes found from the 
analysis were very pleasing, and an elevated regression 
value of 0.9928 was attained. The subsequent performance 
curve was gained on training, testing and validation of the 
data shown in the Fig. 1 using MATLAB 2009a. 
Regression plot showing the output vs. target was attained 
with ten hidden nodes and 0.9928 regression value of was 
accomplished which shows the model validation. Table 2 
shows the experimental and predicted data from statistical 
regression and ANN. 
Genetic Algorithm based Process Optimization 
The nonlinear statistical regression equation obtained from 
RSM was optimized using GA and the plausible results 
were described in table 3. Utmost response (enzyme 
activity) of 20.15 IU/ml was achieved at following 
optimum process conditions, i.e., incubation time-40 h, pH-
6, temperature-34°C, substrate concentration-1.2% and 
inoculum size of 2%(v/v). At these conditions the predicted 
maximum enzyme activity is 19.96 IU/ml. Fig.2 signifies 
that the incubation time, pH and temperature are showing 
foremost effect on response. The predicted and 
experimentally determined enzyme activity by 
Enterobacter aerogenes MTCC111 are higher than the 
activity attained by Aspergillus terreus, Escherichia coli 
and Pectobacterium carotovorum [31, 32, 33]. This novel 
bacterium attained the maximum activity at 34°C unlike the 
other sources of L-asparaginase resulting greatest activity 
at higher temperatures [34, 35, 36, 37, 38, 39, 40]. The 
fermentation time is also very less compared to 
Actinomycetales bacterium BkSoiiA as reported by 
Chitrangada Dash et al. [41]. The results specify that 
highest                   L-asparaginase activity was obtained 
when incubation time was 40 h, pH was 6, temperature 
maintained at 34°C, substrate concentration of 1.2% and 
inoculum size at 2% (v/v). These optimized process 
parameters were validated by conducting an experiment, 
and the resulted enzyme activity of 20.15 IU/ml is quite 
closer to predicted activity of 19.96 IU/ml. Experimental 
values were compared with predicted responses by RSM 
and Neural Network (Table 2 and Fig. 3). In the present 
study, Genetic Algorithm gave more accurate predicted 
values and the optimized response value compared to 
Neural Network prediction and RSM optimization (Table 
4).  
 

Table 1 Variables Used in Experimental Design 

Variables Codes 
Code Levels 

-1 0 +1 
Time(h) A 10 25 40 
pH B 6 8 10 
Temperature (°C) C 20 27.5 35 
Substrate Concentration (%) D 0.5 1 1.5 
Inoculum Size (%) E 0.5 1.25 2 
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Table 2 Observed and Predicted Values of L-asparaginase Activity by RSM and ANN 

S.No. 
Variables 

Response 
(Enzyme Activity IU/ml) 

A B C D E Experimentala RSM Predicted NN Predicted 
1 +1 +1 +1 +1 +1 9.10±0.019 9.96 9.44 
2 -1 -1 -1 -1 -1 13.92±0.011 13.66 13.99 
3 -1 +1 +1 +1 -1 8.86±0.005 9.19 8.94 
4 +1 -1 -1 -1 +1 12.30±0.022 12.68 12.39 
5 0 0 0 0 +1 15.50±0.023 15.39 15.40 
6 0 +1 0 0 0 8.00±0.011 7.99 8.02 
7 +1 +1 +1 -1 -1 9.28±0.009 8.76 9.28 
8 0 0 0 0 0 12.16±0.007 11.84 12.17 
9 +1 -1 -1 +1 -1 12.68±0.006 13.4 12.79 

10 -1 -1 -1 +1 +1 13.44±0.002 14.13 13.24 
11 -1 -1 +1 +1 +1 17.28±0.008 17.17 17.27 
12 0 0 0 0 0 12.16±0.011 11.84 12.17 
13 -1 +1 -1 -1 +1 9.64±0.012 8.81 9.44 
14 0 0 +1 0 0 10.00±0.006 10.88 10.05 
15 +1 -1 +1 -1 +1 15.78±0.008 16.59 18.18 
16 +1 -1 +1 -1 -1 15.22±0.014 14.35 15.20 
17 +1 -1 +1 +1 +1 18.20±0.015 18.70 18.20 
18 +1 +1 -1 +1 -1 9.98±0.010 9.27 10.13 
19 0 0 0 0 0 12.16±0.008 11.84 12.17 
20 -1 +1 -1 +1 -1 11.66±0.013 10.86 11.77 
21 0 0 0 0 -1 14.72±0.015 15.47 14.60 
22 +1 +1 +1 +1 -1 10.04±0.021 10.03 10.07 
23 0 0 0 0 0 12.16±0.003 11.84 12.17 
24 -1 -1 +1 -1 +1 14.54±0.013 15.04 14.26 
25 +1 -1 +1 +1 -1 15.28±0.005 16.52 15.28 
26 -1 +1 +1 -1 -1 8.24±0.002 7.90 8.23 
27 -1 -1 +1 -1 -1 12.44±0.013 12.79 12.47 
28 0 0 -1 0 0 10.00±0.020 9.76 10.03 
29 0 0 0 0 0 12.16±0.005 11.84 12.17 
30 -1 +1 +1 +1 +1 9.34±0.019 9.14 9.40 
31 -1 -1 -1 +1 -1 14.58±0.011 14.29 13.67 
32 -1 +1 -1 -1 -1 9.96±0.009 11.15 9.92 
33 +1 +1 -1 -1 +1 7.00±0.003 7.21 7.00 
34 0 0 0 0 0 12.16±0.006 11.84 12.17 
35 -1 -1 -1 -1 +1 14.22±0.006 13.57 14.20 
36 -1 +1 +1 -1 +1 8.32±0.002 7.91 8.42 
37 +1 -1 -1 +1 +1 13.26±0.007 13.23 13.75 
38 0 0 0 0 0 12.16±0.012 11.84 12.17 
39 +1 0 0 0 0 12.00±0.004 11.77 12.00 
40 0 0 0 +1 0 11.00±0.009 11.28 11.10 
41 +1 +1 +1 -1 +1 8.72±0.008 8.75 8.92 
42 -1 +1 -1 +1 +1 7.66±0.001 8.46 7.71 
43 -1 0 0 0 0 10.92±0.004 11.79 10.90 
44 0 0 0 -1 0 10.00±0.003 10.36 10.00 
45 0 -1 0 0 0 12.96±0.006 13.62 12.97 
46 +1 +1 -1 +1 +1 7.08±0.001 6.85 7.01 
47 0 0 0 0 0 12.16±0.004 11.84 12.17 
48 +1 +1 -1 -1 -1 8.90±0.008 9.57 8.86 
49 +1 -1 -1 -1 -1 13.40±0.005 12.79 13.47 
50 -1 -1 +1 +1 -1 15.80±0.002 14.98 15.79 

a Values are mean±SD. 
 

Table 3 Optimized Process Variables by GA for Maximum L-asparaginase Activity 

Time 
(h) 

pH 
Temp 
( 0C ) 

Substrate 
Concentration 

(%) 

Inoculum 
Size (%) 

Experimental 
Enzyme Activity 

(IU/ml) 

Predicted 
Enzyme Activity 

(IU/ml) 
A B C D E Y Y 
40 6 34 1.2 2 20.15±0.004 19.96 
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Table 4 Comparison of RSM and GA optimization for Maximum L-asparaginase Activity 

S. No Method of Optimization 
Experimental 

Enzyme Activity 
(IU/ml) 

Predicted 
Enzyme Activity 

(IU/ml) 
1 RSM 18.35 18.70 
2 GA 20.15 19.96 

 

 
Fig. 1 Output vs. target regression plot 

 

 
Fig. 2 GA Optimization results 
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Fig. 3 Observation of predicted and actual values 

 
 

CONCLUSION 
L-asparaginase production was studied in shake flasks 
using novel Enterobacter aerogenes MTCC111. Based on 
preliminary results five diverse fermentation parameters 
were considered for further optimization of enzyme 
production. An effective correlation of 0.9928 was 
achieved for predicted enzyme activity values using ANN. 
This experimental study confirmed that ANN prediction is 
better than statistical regression prediction (RSM). It is 
observed that a significant increase of L-asparaginase 
activity by 3 fold after optimization of process variables 
using GA. Based on GA optimization greatest enzyme 
production was influenced by the Incubation time, pH and 
Temperature.  
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