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Abstract  
Protein is the crucial bio- molecule in living cells, involved in all the life processes and, controlling most of the biochemical 
reactions, signal transduction and transmission or the correct expression of genetic information. In the current study, we have 
developed a hybrid multi-layer perceptron network (ADAMMLP) using an adaptive moment based stochastic gradient descent 
optimization technique, which makes the model noise resistant, takes very less training time and suitable for both small and 
large sized datasets. We have evaluated the model using 4 benchmark datasets,204,277,498 and PDB25 with sequence 
similarity as low as 25%. The model shows high class wise prediction accuracies for all the datasets. This model shows highest 
prediction accuracy of 90.23%, 91.64%, 73.68% and 79.8% for 204,277,498 and PDB25 dataset respectively in presence of 
20% noise. The maximum training times in presence of 20% noise are 3.05sec, 2.64sec, 3.54 sec and 10.47sec for 204,277,498 
and PDB25 datasets respectively.  
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1. INTRODUCTION

Protein secondary structure prediction (PSSP) is a critical 
task in protein science and computational biology, and can 
be applied to understand protein 3-dimensional (3-D) and 
quaternary structure further, to predict their biological 
functions. With exponential growth of protein sequences in 
Protein Data Bank (PDB), out of which only 0.2% with 
known structure and much lesser are with known functions. 
Existing experimental methods are extremely time 
consuming and hence efficient computational methods for 
protein structure prediction are needed to mitigate these 
problems. The pioneering work of (Levitt M et al., 1976) 
distinguishes four structural classes of globular proteins: 
(1) all-α class that encompasses proteins with strands only,
(2) all-β class that incorporates proteins with only small
amount of helices, (3) α/β class with proteins that include
both helices and mostly parallel strands and (4) α + β class,
which includes proteins with both helices and antiparallel
strands. Application of machine learning techniques in
PSSP has been the primary focus in the last three decades.
The principle of computational methods for PSSP is that
the methods can learn some rules based on the analysis of
known protein sequences and their secondary structures to
predict the secondary structures of unknown protein
sequences.
Many methods have been proposed for predicting the
secondary structure of protein, such as methods by
exploiting the physical and chemical properties of amino
acids, methods based on sequence homology and statistical
analysis, etc. (Chen et al.,2007; Ding S et al., 2012). The
problem of protein secondary structural class prediction
from the primary sequence is mainly three fold: (i) to
construct a reliable benchmark dataset for training and
testing the predictor (ii) to design a hybrid feature
extraction method to achieve structural information from

amino acid sequences (iii) to lay out a amalgamated 
classification algorithm which could be trained to predict 
the secondary structures with boosted accuracy. Here an 
adaptive moment based feed forward neural network is 
proposed, which has fewer training time and works 
efficiently even with less training data. 
The rest of the paper has been organized as follows: section 
2 describes dataset used and feature extraction methods, 
section 3 provides description of a feed forward network 
based on first-order gradient-based optimization, based on 
adaptive estimates of lower-order moments. Section 4 
presents results and discussion, and section 5 provides 
conclusion and limitations. 

2. DATA SET AND FEATURE EXTRACTION

2.1 Data Set 
We have used 4 publicly available dataset. (1) First data set 
constructed by (Chou KC et al., 1999) has 204 residues (2) 
Two other data set constructed by (Zhou GP et al., 1998) 
have 277 and 498 residues respectively. The average 
sequence similarity scores in these protein classes are 21% 
for all α, 30% for all β, 15% for α/β and 14% for α+β 
class.(3) Dataset PDB25 (Kurgan LA et al., 2006) has 25% 
sequence similarity. 
2.2 Feature Extraction 
2.2.1Preserving the basic amino acid composition 
information  
The primary amino acid sequence is the skeleton of the 
protein molecule, which subsequently undergoes many post 
translational changes to stabilize. Amino acid composition 
(AAC) as described in (Sahu et al., 2010) is the normalized 
count of amino acids in a protein chain. AAC is useful in 
the sense AAC has these benefits: (a) AAC is a simple, yet 
powerful feature which performs surprisingly well given its 
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simplicity, (b) AAC is independent of the classification 
framework, and, (c) it is computationally  tractable. 
 
2.2.2 Preserving the sequence order information 
It is indispensable to perpetuate the sequence order 
information as protein molecules having equivalent AAC 
may have different functionality. In this context Pseudo 
Amino Acid (PseAA) composition has been used widely in 
literature in varied bioinformatics application. Sequence 
order using PseAA along a protein chain can be formulated 
as in Eq.(1) (Zhou et al.,2007) 
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Where ߠ ൌ ݉௧ order correlation coefficient of amino 
acid sequence R of length L. 
Correlation coefficient ߠ can be computed in different 
ways by taking different operators as computed in Eqn. (2). 
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Where ܪሺܴሻ and ܪ൫ ܴ൯ are either hydrophobicity 
(Tanford C et al, 1962) or hydrophilicity (Hopp TP et al., 
1981) indices of different amino acids. The hydrophobicity 
and hydrophilicity values were subjected to standard 
normalization procedure as given in Eq. (3) (Zhou et al., 
2007). 
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  ܴ  : ݅௧		Amino acid residue 
 : Original values of hydrophobicity or				ܪ  
hydrophilicity.  
 

2.2.3 Spectrotemporal analysis of protein 
Amino acids in protein chain are not rigidly fixed rather in 
continuous internal motions. These internal movement of 
amino acids play vital role in formation of both α helix and 
β sheets. Low frequency components have higher 
biological significance (Chou KC et al., 1999). Raw amino 
acid sequence can be thought of as a discrete signal. The 
significant low frequency components can be extracted by 
transforming the discrete amino acid sequence to frequency 
domain using discrete Fourier transform (DFT) (Liu et al., 
2005) using Eqn.(4). 
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             ܲ :݊௧ Protein sequence. 
(Sahu S et al., 2010) suggested discrete cosine 
transformation (DCT) (Ahmed et al., 1974) to extract 
spectral information, which overcomes the limitations of 
DFT. The advantages of DCT over DFT can be 
summarized as (1) it doesn’t add any discontinuity and 
artifact to the original signal. (2) Computational complexity 

is lower. The discrete cosine transformation of the protein 
sequence ܲ can be derived as in Eq. (5) 
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 Length of amino acid sequence :  ܮ            
  : DC component of the signalܩ            
 Both DCT and DFT are incapable of dealing with noise, 
which creeps into biomedical signals and both the approach 
deal with only the frequency domain of the signal and 
neglecting time domain. Stockwell transform is a 
mechanism for analyzing signals in a small time window 
(Stockwell RG et al., 1996). In this study, protein 
molecules are represented by replacing each amino acid by 
their corresponding electron ion interaction potential (EIIP) 
values as described previously (Veljkovic V et. al., 1985). 
Stockwell-transform is applied to each EIIP encoded 
protein sequence, to compute four different features as 
discussed in (Mishra S et al., 2008). The sequence 
representation can be summarized as a hybrid of amino 
acid composition, amphiphillic correlation factors, and 
Stockwell transform based features extracted from 
equivalent EIIP representation of raw amino acid sequence. 

P=ሾ ଵܲ........ 2ܲ0 2ܲ1........ 3ܲ0 3ܲ1........  ସሿܨଷܨଶܨଵܨ4ܲ0
Where, 
ଵܲ........ 2ܲ0: 20 Features -amino acid composition. 
2ܲ1...... 3ܲ0: 10-Correlation coefficients based on 

hydrophobicity. 
3ܲ1...... 4ܲ0: 10-Correlation coefficients based on 

hydrophilicity. 
ሾܨଵܨଶܨଷܨସሿ: Four features were extracted using S-transform 
on equivalent EIIP coded sequence. 
 
3.  DESIGN OF FEED FORWARD NETWORK BASED ON FIRST 

ORDER GRADIENT-BASED STOCHASTIC OPTIMIZATION 
3.1. Feed-forward neural networks (Jain et al., 1996) can be 
applied to a wide range of classification problems with a 
high degree of accuracy. Feed-forward neural networks are 
nonlinear, self- adaptive methods and make very few a 
priori assumptions about the models for problems under 
study with high generalization ability. One distinguished 
advantage of the feed-forward neural networks over other 
classes of nonlinear models is that they are universal 
approximators, which is due to their ability to process data 
in parallel and the network model is built upon the 
characteristic from the data. A network model is 
characterized by 3 layers, one input layer, and one output 
layer and can be many hidden layers. Inter layer nodes have 
acyclic network links but intra-layer nodes are not 
connected. The relationship between the output ݕ௧ and the 
inputs ൫ݕ௧ିଵ … . .  .௧ି൯ can be represented as in Eqn. (7)ݕ
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Where ݓ is the initial weight vector,		ݓ are the network 
connecting weights, ܲ is the no. of input nodes, ܳ	is the no. 
of output nodes, ݃݅ݏ is the sigmoidal or logistic transfer 
function which is often used in literature as activation 
function or transfer function as there is no established 
linear mapping between input and output signal. 
ሻݔሺ݃݅ݏ

ൌ
1

1  ݁ି௫
																																																																																																																																							ሺ8ሻ 

݁௧	: Error estimated in time step t for input signal	ݔ. 
 A defined feed forward network is used for training which 
is a process of parameter estimation. Different optimization 
procedures can be used for network parameters, which aims 
at overall minimization of the cost function of the network. 
Generally mean squared error is choosen as the cost 
function. The cost function ܧ can be given as in the Eq. (9). 
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Where ܰ	is the no. of epoches. The network free 
parameters are the connecting weights, which are 
minimized by some efficient non-linear optimization 
algorithm like back propagation, which is based on 
gradient-descent algorithm as in Eq. (10). 
Δݓ, ൌ

െߟ
డா

డ௪,ೕ
																																																																																																																					

Where ߟ is the learning rate parameter and 
డா

డ௪,ೕ
	is the 

direction of optimal change in the weight vector.The 
problem with the gradient descent approach is that, it can 
fall in local optima. Therefore another optimization method 
based on adaptive estimates of lower order moments was 
suggested by (Kingma D et al.,2014). 
 
3.2.  Adaptive moment based stochastic optimization 
 Biomedical signals have inherent source of noise, which 
may be due to experimental error or due to human error. 
Gradient-descent optimization is a simple and efficient 
optimization approach,that works well if the objective 
function is differentiable, data sample is non-noisy. If the 
objective function is stochastic, data is high dimensional 
and noisy an alternative optimaztion approach is 
desirable,as reported by (Kingma D et al.,2014).This is 
based on first-order gradients. This can be used in feed 
forward neural network for weight vector optimization.  

Modified Algorithm for feed forward network: 
Function adapative-moment-based-BackPropagation(input data) 
   Input: Data set with input vecor X and output vector Y 
   Intial weight vector W and tanh activation function  

repeat 
    for each p in dataset do 
 for each node j in the input layer do ܽ ← 	  ሿሾݔ
               for  ݈ ൌ  do	ܯ	ݐ	2
                 ݅݊ ൌ ∑ ܹ, ܽ  
      ܽ ൌ  ሺ݅݊ሻ݄݊ܽݐ
            for each node i in the output layer do 
                 ᇞൌ ᇱሺ݅݊ሻ݄݊ܽݐ ∗ 	ሺݕሾሿ െ ܽሻ 
                 for ݈ ൌ ܯ െ 1 to  1 do 
                    for each node j in layer ݈ do 
                       Δ ൌ ᇱ൫݄݅݊ܽݐ ݊൯ ∑ ܹ, ᇞ 
                          For each node i in layer ݈  1		do 
                                  Update weight W := Adam ሺᇞሻ 
Until stopping criteria is satisfied     
end                     

     Function  Adam (ᇞሻ: 
Input: Requires ߚଵ,	ߚଶ, step size ߙ, ߳ and current gradient value ᇞ,	 ௧ܹ  is the weight at epoch 

t, Initially ߚଵ ൌ 0.9, ଶߚ ൌ 0.999  and ߳ ൌ 10ି଼ 
       Compute:                 
               ݉௧ ൌ ଵ.݉௧ିଵߚ  ሺ1 െ  ଵሻ.ᇞߚ
௧ݒ                 ൌ .ଶߚ ௧ିଵݒ  ሺ1 െ .ଶሻߚ ሺᇞሻଶ	 
                ෝ݉௧ ൌ 		݉௧/൫1 െ ଵߚ

௧൯ 
ො௧ݒ																		 ൌ 		 ௧/൫1ݒ െ ଶߚ

௧൯ 
                ௧ܹ ൌ ௧ܹିଵ െ .ߙ ෝ݉௧/൫ඥݒො௧  ߳൯ 
                return ௧ܹ 
   end 
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3.3. Network structure and performance measurement  
We decided to choose a constant number (40) hidden 
nodes, learning rate (0.001) and tangent hyperbolic 
ሺ݄݊ܽݐሻ	ܽܿ݊݅ݐܿ݊ݑ݂݊݅ݐܽݒ݅ݐ	for ADAMMLP for all data 
sets after several run of the algorithm.ߚଵ and ߚଶ  were taken 
as 0.9 and 0.999 respectively and initial weight vector 
ܹwas chosen randomly. 

Prediction accuracy of the ADAMMLP was measured 
using ܨଵscore, Recall and Precision score. 
 

4. RESULT AND DISCUSSION 
In Figure 1(A) for 204 dataset, the error rate per epoch falls 
consistently and converges after 500 epochs even with 
addition of noise and the ADAMMLP exhibits a stable 
behaviour. In 1(B) for 277 dataset, the model converges 
smoothly upto 15% noise addition but after 20% noise, 
though the network is not unstable, the fall in error rate is 
rather sharp. However in 1(C) and 1(D) the error rate per 
epoch donot fall smoothly.The model predicts nicely for α 
and β classes but its performance falls for classes α+β and 
α/β and the model requires 1000 epoches to converge.With 
higher epoches, the performance donot increase further. In 
204 and 277 dataset the prediction accuracy of the classifier 
is unaffected as the relative amount of α+β class proteins in 
these datasets are significantly lower as compared to large 
dataset such as 498.For PDB25 dataset, even the error rate 
donot fall smoothly,the class wise prediction accuracy is 
significantly higher. In all the cases the prediction accuracy 

of α+β class has remained lower. The model requires less 
training time for all datasets as low as in the order of 
seconds. In Table [1], the class wise prediction results of 
the ADAMMLP has been listed for degree of noise 
addition.  
In Figure 2(B-C), the prediction results for α and β classes 
for all data sets are significantly better but for α/β and α+β 
classes, only 204 and 277 data sets have better accuracy. 
Addition of noise have not affected the prediction accuracy 
of the model for small data sets like 277 and 204, despite 
only 500 epochs have been used for training of the 
network. For 498 dataset, the network performs well after 
1000 epochs for α and β despite having constant learning 
rate and network structure. For PDB25 dataset, prediction 
accuracy is satisfactory for all the classes. 
In fig 3(A), the overall prediction accuracy for all datasets 
for different noise level indicates that the noise addition 
doesnot affect significantly in the performance of the 
network except for the 498 dataset. In fig 3(B), for 204 and 
277 data set the F1-score remain consistently above 0.75 
and for PDB25, it remains above 0.55 except for 10% noise 
addition. Recall score remain above 0.8 for 204 and 277 
dataset and above 0.6 for PDB25 data set.For 498 data set,it 
is around 0.5 but falls after 10% noise addition as shown in 
fig 3(C), while specificity score is consistently high above 
0.8 for all tha data set as shown in fig3(D). 

 

 
Figure 1. Impact of noise 5%,10%,15% and 20% on the prediction accuracy of the ADAMMLP model on datasets 

207,277,498 and, PDB25. 
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Table 1: Prediction of ADAMMLP for differenent classes of all considered datasets 

Data Set 
Class wise Prediction Accuracy-Without 

Noise 
Time for Training in seconds 

Class α β α+β α/β  
204 95.12 87.8 78.04 95.12 3.45 
277 96.29 88.9 88.9 92.59 3.03 
498 86.86 87.8 78.7 55.6 3.53 

PDB25 83.28 78.80 79.40 86.8 12.96 
Data Set Class wise Prediction Accuracy-5% Noise  

Class α β α+β α/β  
204 95.12 92.68 82.92 95.12 3.07 
277 94.5 88.8 88.89 94.4 3.35 
498 86.8 86.8 80.8 58.6 3.22 

PDB25 87.4 81.7 80 88.03 10.75 
Data Set Class wise Prediction Accuracy-10% Noise  

Class α β α+β α/β  
204 92.68 87.80 78.04 92.68 3.41 
277 96.2 88.9 85.1 88.9 3.32 
498 86.8 86.8 77.8 53.5 3.81 

PDB25 79.1 71.34 76.11 86.26 13.96 
Data Set Class wise Prediction Accuracy-15% Noise  

Class α β α+β α/β  
204 97.56 90.24 82.92 95.12 3.32 
277 96.2 90.7 87.03 88.9 2.62 
498 86.8 86.8 75.7 55.6 3.82 

PDB25 83.28 73.8 78.5 87.4 10.65 
Data Set Class wise Prediction Accuracy20 % Noise  

Class α β α+β α/β  
204 95.12 90.24 82.9 92.68 3.05 
277 96.29 88.9 88.9 92.5 2.64 
498 84.8 87.8 73.73 48.4 3.54 

PDB25 80.8 73.7 77.6 87.1 10.47 
  
 

 
Figure 2. Class wise prediction accuracy of the ADAMMLP for datasets 204,277,498 and PDB25 in presence of 

5%,10%,15% and 20% Gaussian noise and effect on training time. 
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Figure 3. (A) shows the overall prediction accuracy of ADAMMLP, F1-score, Recall and precision are shown in (B),(C) 
and (D) in presence of different degree of noise in 204,277,498, and PDB25 datasets. 

5. CONCLUSION

In this work, a hybrid adapative moment stochastic gradient 
descent based muliti layer perceptron network-ADAMMLP 
is suggested and verified for stable prediction accuracy in 
presence of Gaussian noise, which takes significantly less 
training time but with high prediction accuracy both for 
small and large sized datasets.The robustness of the model 
is evident from its ability to predict as high as 91.64% and 
minimum 73.64% in presence of 20% Gaussian noise. This 
model can be employed in other classification  problems 
involving huge amount of data and noise.   
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